(本小題滿分16分)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)任意的正整數(shù)n,都有an=5Sn+1成立,記bn= (nN*)         

(1)求數(shù)列{an}與數(shù)列{bn}的通項(xiàng)公式;

(2)記cnb2nb2n−1 (nN*)  ,  設(shè)數(shù)列{cn}的前n項(xiàng)和為Tn,求證:對(duì)任意正整數(shù)n都有Tn<;  

(3)設(shè)數(shù)列{bn}的前n項(xiàng)和為Rn,是否存在正整數(shù)k,使得Rk≥4k成立?若存在,找出一個(gè)正整數(shù)k;

若不存在,請(qǐng)說(shuō)明理由;

(1)當(dāng)時(shí),a1=5S1+1, ∴a1=-                                                                 (1分)

   ∴an+1an=5an+1 即 =-

∴數(shù)列是首項(xiàng)為a1=-     ,公比為q=-的等比數(shù)列,                   (3分)

an=(-)n,  bn= (nN*)                                    (5分)

(2)由(1)知bn==4+   

cnb2nb2n−1=+==<=           (7分)

又  b1=3,  b2=,  ∴ c1=,   ,  所以當(dāng)時(shí),T1<,                             (8分)

當(dāng)時(shí),Tn<+15(++…+)=+15·<+=<            (10分)

(3)不存在正整數(shù),使得成立。                                            (11分)

證明:由bn=4+       

b2k−1b2k=8++=8+-=8-<8      (13分)

∴當(dāng)n為偶數(shù)時(shí),設(shè)    

                                 (14分)

當(dāng)n為奇數(shù)時(shí),設(shè)

        (15分)

∴對(duì)于一切的正整數(shù)n,都有     

    ∴不存在正整數(shù),使得成立。                                              (16分)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010江蘇卷)18、(本小題滿分16分)

在平面直角坐標(biāo)系中,如圖,已知橢圓的左、右頂點(diǎn)為A、B,右焦點(diǎn)為F。設(shè)過(guò)點(diǎn)T()的直線TA、TB與橢圓分別交于點(diǎn)M、,其中m>0,。

(1)設(shè)動(dòng)點(diǎn)P滿足,求點(diǎn)P的軌跡;

(2)設(shè),求點(diǎn)T的坐標(biāo);

(3)設(shè),求證:直線MN必過(guò)x軸上的一定點(diǎn)(其坐標(biāo)與m無(wú)關(guān))。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年泰州中學(xué)高一下學(xué)期期末測(cè)試數(shù)學(xué) 題型:解答題

(本小題滿分16分)
函數(shù)(),
A=
(Ⅰ)求集合A;
(Ⅱ)如果,對(duì)任意時(shí),恒成立,求實(shí)數(shù)的范圍;
(Ⅲ)如果,當(dāng)“對(duì)任意恒成立”與“內(nèi)必有解”同時(shí)成立時(shí),求 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆江蘇大豐新豐中學(xué)高二上期中考試文數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分16分)     本題請(qǐng)注意換算單位

某開發(fā)商用9000萬(wàn)元在市區(qū)購(gòu)買一塊土地建一幢寫字樓,規(guī)劃要求寫字樓每層建筑面積為2000平方米。已知該寫字樓第一層的建筑費(fèi)用為每平方米4000元,從第二層開始,每一層的建筑費(fèi)用比其下面一層每平方米增加100元。

(1)若該寫字樓共x層,總開發(fā)費(fèi)用為y萬(wàn)元,求函數(shù)y=f(x)的表達(dá)式;

(總開發(fā)費(fèi)用=總建筑費(fèi)用+購(gòu)地費(fèi)用)

(2)要使整幢寫字樓每平方米開發(fā)費(fèi)用最低,該寫字樓應(yīng)建為多少層?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆安徽省蚌埠市高二下學(xué)期期中聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分16分)設(shè)命題:方程無(wú)實(shí)數(shù)根; 命題:函數(shù)

的值域是.如果命題為真命題,為假命題,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省高一第三階段檢測(cè)數(shù)學(xué)卷 題型:解答題

(本小題滿分16分)

已知函數(shù)f(x)=為偶函數(shù),且函數(shù)yf(x)圖象的兩相鄰對(duì)稱軸間的距離為

(Ⅰ)求f)的值;

(Ⅱ)將函數(shù)yf(x)的圖象向右平移個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)延長(zhǎng)到原來(lái)的4倍,縱坐標(biāo)不變,得到函數(shù)yg(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案