已知橢圓
(a>b>0)的離心率為
,右焦點為(
,0).
(I)求橢圓的方程;
(Ⅱ)過橢圓的右焦點且斜率為k的直線與橢圓交于點A(x
l,y
1),B(x
2,y
2),若
, 求斜率k是的值.
(Ⅰ)
(Ⅱ)
試題分析:(Ⅰ)由右焦點可知
,由離心率可求
,根據(jù)
可求
。(Ⅱ)設(shè)出直線方程
,然后聯(lián)立,消掉y(或x)得到關(guān)于x的一元二次方程,再根據(jù)韋達(dá)定理得出根與系數(shù)的關(guān)系式。先求出
再將
、
代入
求得
的值。
試題解析:解(Ⅰ)因為右焦點為(
,0),所以
。因為
,所以
。
因為
,所以
故橢圓方程為
. 5分
(Ⅱ)因為直線
過右焦點
,設(shè)直線
的方程為
.
聯(lián)立方程組
消去
并整理得
. (*)
故
,
.
.
又
,即
.
所以
,可得
,即
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
:
(
)過點
,且橢圓
的離心率為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若動點
在直線
上,過
作直線交橢圓
于
兩點,且
為線段
中點,再過
作直線
.證明:直線
恒過定點,并求出該定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在平面直角坐標(biāo)系
中,已知過點
的橢圓
:
的右焦點為
,過焦點
且與
軸不重合的直線與橢圓
交于
,
兩點,點
關(guān)于坐標(biāo)原點的對稱點為
,直線
,
分別交橢圓
的右準(zhǔn)線
于
,
兩點.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)若點
的坐標(biāo)為
,試求直線
的方程;
(3)記
,
兩點的縱坐標(biāo)分別為
,
,試問
是否為定值?若是,請求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知點
,
,動點
滿足
.
(1)求動點
的軌跡
的方程;
(2)在直線
:
上取一點
,過點
作軌跡
的兩條切線,切點分別為
.問:是否存在點
,使得直線
//
?若存在,求出點
的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
橢圓
與雙曲線
有公共的焦點,過橢圓E的右頂點作任意直線l,設(shè)直線l交拋物線
于M、N兩點,且
.
(1)求橢圓E的方程;
(2)設(shè)P是橢圓E上第一象限內(nèi)的點,點P關(guān)于原點O的對稱點為A、關(guān)于x軸的對稱點為Q,線段PQ與x軸相交于點C,點D為CQ的中點,若直線AD與橢圓E的另一個交點為B,試判斷直線PA,PB是否相互垂直?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓C的左、右焦點分別為
,橢圓的離心率為
,且橢圓經(jīng)過點
.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)線段
是橢圓過點
的弦,且
,求
內(nèi)切圓面積最大時實數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖所示,已知圓
為圓上一動點,點
是線段
的垂直平分線與直線
的交點.
(1)求點
的軌跡曲線
的方程;
(2)設(shè)點
是曲線
上任意一點,寫出曲線
在點
處的切線
的方程;(不要求證明)
(3)直線
過切點
與直線
垂直,點
關(guān)于直線
的對稱點為
,證明:直線
恒過一定點,并求定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
直線
交雙曲線
于
兩點,
為雙曲線
上異于
的任意一點,則直線
的斜率之積為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
橢圓
內(nèi)有一點
,過點
的弦恰好以
為中點,那么這條弦所在直線的斜率為
,直線方程為
.
查看答案和解析>>