已知橢圓:的離心率為,分別為橢圓的左、右焦點(diǎn),若橢圓的焦距為2.
⑴求橢圓的方程;
⑵設(shè)為橢圓上任意一點(diǎn),以為圓心,為半徑作圓,當(dāng)圓與橢圓的右準(zhǔn)線有公共點(diǎn)時(shí),求△面積的最大值.
⑴. ⑵。
解析試題分析:⑴因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b2/1/zmpoo2.png" style="vertical-align:middle;" />,且,所以. 2分
所以. 4分
所以橢圓的方程為. 6分
⑵設(shè)點(diǎn)的坐標(biāo)為,則.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e6/5/12nu33.png" style="vertical-align:middle;" />,,所以直線的方程為. 8分
由于圓與有公共點(diǎn),所以到 的距離小于或等于圓的半徑.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8b/2/elal22.png" style="vertical-align:middle;" />,所以, 10分
即 .
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/92/4/1c7gl2.png" style="vertical-align:middle;" />,所以. 12分
解得,又,∴. 14分
當(dāng)時(shí),,所以 16分
考點(diǎn):本題主要考查橢圓的標(biāo)準(zhǔn)方程,橢圓的幾何性質(zhì),直線與橢圓的位置關(guān)系,不等式的解法。
點(diǎn)評:中檔題,求橢圓的標(biāo)準(zhǔn)方程,主要運(yùn)用了橢圓的幾何性質(zhì),a,b,c,e的關(guān)系。曲線關(guān)系問題,往往通過聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理,簡化解題過程。利用函數(shù)觀點(diǎn),建立三角形面積的表達(dá)式,確定其最值。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上.若橢圓上的點(diǎn)到焦點(diǎn)、的距離之和等于4.
(1)寫出橢圓的方程和焦點(diǎn)坐標(biāo).
(2)過點(diǎn)的直線與橢圓交于兩點(diǎn)、,當(dāng)的面積取得最大值時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為,短軸長為4.
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)直線x=2與橢圓C交于P、Q兩點(diǎn),A、B是橢圓O上位于直線PQ兩側(cè)的動(dòng)點(diǎn),且直線AB的斜率為.
①求四邊形APBQ面積的最大值;
②設(shè)直線PA的斜率為,直線PB的斜率為,判斷+的值是否為常數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是橢圓的左、右焦點(diǎn),是橢圓上位于第一象限內(nèi)的一點(diǎn),點(diǎn)也在橢圓上,且滿足(是坐標(biāo)原點(diǎn)),,若橢圓的離心率為.
(1)若的面積等于,求橢圓的方程;
(2)設(shè)直線與(1)中的橢圓相交于不同的兩點(diǎn),已知點(diǎn)的坐標(biāo)為(),點(diǎn)在線段的垂直平分線上,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓的左焦點(diǎn)為,過點(diǎn)的直線交橢圓于兩點(diǎn),線段的中點(diǎn)為,的中垂線與軸和軸分別交于兩點(diǎn).
(1)若點(diǎn)的橫坐標(biāo)為,求直線的斜率;
(2)記△的面積為,△(為原點(diǎn))的面積為.試問:是否存在直線,使得?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓的離心率為,兩焦點(diǎn)分別為,點(diǎn)M是橢圓C上一點(diǎn),的周長為16,設(shè)線段MO(O為坐標(biāo)原點(diǎn))與圓交于點(diǎn)N,且線段MN長度的最小值為.
(1)求橢圓C以及圓O的方程;
(2)當(dāng)點(diǎn)在橢圓C上運(yùn)動(dòng)時(shí),判斷直線與圓O的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
求傾斜角是直線y=-x+1的傾斜角的,且分別滿足下列條件的直線方程:(1)經(jīng)過點(diǎn)(,-1);(2)在y軸上的截距是-5.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓C的方程;
(2)設(shè),、是橢圓上關(guān)于軸對稱的任意兩個(gè)不同的點(diǎn),連結(jié)交橢圓于另一點(diǎn),求直線的斜率的取值范圍;
(3)在(2)的條件下,證明直線與軸相交于定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
曲線都是以原點(diǎn)O為對稱中心、坐標(biāo)軸為對稱軸、離心率相等的橢圓.點(diǎn)M的坐標(biāo)是(0,1),線段MN是曲線的短軸,并且是曲線的長軸 . 直線與曲線交于A,D兩點(diǎn)(A在D的左側(cè)),與曲線交于B,C兩點(diǎn)(B在C的左側(cè)).
(1)當(dāng)=,時(shí),求橢圓的方程;
(2)若,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com