如圖,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,點D是BC的中點.
(1)求異面直線A1B與C1D所成角的余弦值;
(2)求平面ADC1與平面ABA1所成二面角的正弦值.
(1) (2)
【解析】
解 (1)以A為坐標原點,建立如圖所示的空間直角坐標系A-xyz,
則A(0,0,0),B(2,0,0),C(0,2,0),D(1,1,0),A1(0,0,4),C1(0,2,4),所以=(2,0,-4),=(1,-1,-4).因為cos〈,〉===,所以異面直線A1B與C1D所成角的余弦值為.
(2)設平面ADC1的法向量為n1=(x,y,z),因為=(1,1,0),=(0,2,4),所以n1·=0,n1·=0,即x+y=0且y+2z=0,取z=1,得x=2,y=-2,所以,n1=(2,-2,1)是平面ADC1的一個法向量.取平面AA1B的一個法向量為n2=(0,1,0),設平面ADC1與平面ABA1所成二面角的大小為θ.
由|cos θ|===,得sin θ=.
因此,平面ADC1與平面ABA1所成二面角的正弦值為.
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪專題復習真題感悟1-7練習卷(解析版) 題型:選擇題
滿足a,b∈{-1,0,1,2},且關于x的方程ax2+2x+b=0有實數(shù)解的有序數(shù)對(a,b)的個數(shù)為( ).
A.14 B.13
C.12 D.10
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪專題復習真題感悟1-3練習卷(解析版) 題型:選擇題
已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,φ∈R),則“f(x)是奇函數(shù)”是“φ=”的 ( ).
A.充分不必要條件 B.充分必要條件
C.必要不充分條件 D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪專題復習真題感悟1-1練習卷(解析版) 題型:填空題
執(zhí)行如圖所示的程序框圖,輸出的S值為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復習真題感悟江蘇專用?紗栴}4練習卷(解析版) 題型:解答題
如圖,在三棱錐中S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.過A作AF⊥SB,垂足為F,點E,G分別是棱SA,SC的中點.
求證:(1)平面EFG∥平面ABC;
(2)BC⊥SA.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復習真題感悟江蘇專用?紗栴}3練習卷(解析版) 題型:填空題
在平面直角坐標系xOy中,圓C的方程為x2+y2-8x+15=0,若直線y=kx-2上至少存在一點,使得以該點為圓心,1為半徑的圓與圓C有公共點,則k的最大值是________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復習真題感悟江蘇專用?紗栴}2練習卷(解析版) 題型:填空題
函數(shù)f(x)=Asin(ωx+φ),(A,ω,φ是常數(shù),A>0,ω>0)的部分圖象如圖所示,則f(0)=________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復習專題提升訓練江蘇專用階段檢測4練習卷(解析版) 題型:解答題
如圖,在平面直角坐標系xOy中,橢圓C:=1(a>b>0)的離心率為,以坐標原點為圓心,橢圓C的短半軸長為半徑的圓與直線x-y+2=0相切.
(1)求橢圓C的方程;
(2)已知點P(0,1),Q(0,2),設M,N是橢圓C上關于y軸對稱的不同兩點,直線PM與QN相交于點T.求證:點T在橢圓C上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com