在平面直角坐標系中,的兩個頂點的坐標分別是(-1,0),(1,0),點的重心,軸上一點滿足,且.
(1)求的頂點的軌跡的方程;
(2)不過點的直線與軌跡交于不同的兩點、,當時,求的關系,并證明直線過定點.
(1)  (2) ,直線過定點

試題分析:(1)設點坐標為
因為的重心,故點坐標為.
由點軸上且知,點的坐標為,                   ……2分          
因為,所以,即.
的頂點的軌跡的方程是.                  ……4分
(2)設直線的兩交點為.
消去,
,
,.                                     ……8分
因為,所以,
,
整理得.解得.                           ……10分
①當=,直線過點(-1,0)不合題意舍去。
②當時,=,直線過點.
綜上所述,直線過定點.                                   ……12分
點評:求曲線方程時,不要忘記驗證是否有限制條件;解決直線與圓錐曲線的位置關系時,一般離不開直線方程與圓錐曲線方程聯(lián)立方程組,此時不要忘記驗證判別式大于零.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
如圖,橢圓長軸端點為,為橢圓中心,為橢圓的右焦點,
,.

(1)求橢圓的標準方程;
(2)記橢圓的上頂點為,直線交橢圓于兩點,問:是否存在直線,使點恰為的垂心?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知橢圓的中心在坐標原點O,長軸長為2,離心率e=,過右焦點F的直線l交橢圓于P、Q兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若OP、OQ為鄰邊的平行四邊形是矩形,求滿足該條件的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過點P(0,-2)的雙曲線C的一個焦點與拋物線的焦點相同,則雙曲線C的標準方程是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓的中心在原點,焦點在軸上,長軸長是短軸長的2倍且經(jīng)過點M(2,1),平行于OM的直線軸上的截距為,交橢圓于A、B兩個不同點.
(1)求橢圓的方程;
(2)求m的取值范圍;
(3)求證直線MA、MB與軸始終圍成一個等腰三角形.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知為直角三角形,三邊長分別為,其中斜邊AB=,若點在直線上運動,則的最小值為              

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線的一條漸近線經(jīng)過點,則該雙曲線的離心率為___________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

我們把離心率為黃金比的橢圓稱為“優(yōu)美橢圓”.設 為“優(yōu)美橢圓”,F(xiàn)、A分別是左焦點和右頂點,B是短軸的一個端點,則 (  )
A.60° B.75°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(13分) 如圖,已知橢圓的兩個焦點分別為,斜率為k的直線l過左焦點F1且與橢圓的交點為A,B與y軸交點為C,又B為線段CF1的中點,若,求橢圓離心率e的取值范圍。

查看答案和解析>>

同步練習冊答案