如圖,拋物線E:y2=4x的焦點(diǎn)為F,準(zhǔn)線l與x軸的交點(diǎn)為A.點(diǎn)C在拋物線E上,以C為圓心,|CO|為半徑作圓,設(shè)圓C與準(zhǔn)線l交于不同的兩點(diǎn)M,N.

(1)若點(diǎn)C的縱坐標(biāo)為2,求|MN|;
(2)若|AF|2=|AM|·|AN|,求圓C的半徑.

(1)2  (2)

解析解:(1)拋物線y2=4x的準(zhǔn)線l的方程為x=-1.
由點(diǎn)C的縱坐標(biāo)為2,點(diǎn)C在拋物線E上,
得點(diǎn)C的坐標(biāo)為(1,2),
所以點(diǎn)C到準(zhǔn)線l的距離d=2,
又|CN|=|CO|=,
所以|MN|=2=2=2.
(2)設(shè)C(,y0),
則圓C的方程為(x-2+(y-y0)2=+,
即x2-x+y2-2y0y=0.
由x=-1,
得y2-2y0y+1+=0,
設(shè)M(-1,y1),N(-1,y2),則

由|AF|2=|AM|·|AN|,
得|y1y2|=4,
所以+1=4,
解得y0,此時(shí)Δ>0.
所以圓心C的坐標(biāo)為(,)或(,-),
從而|CO|2=,
|CO|=,
即圓C的半徑為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)定圓,動(dòng)圓過點(diǎn)且與圓相切,記動(dòng)圓圓心的軌跡為.
(1)求軌跡的方程;
(2)已知,過定點(diǎn)的動(dòng)直線交軌跡、兩點(diǎn),的外心為.若直線的斜率為,直線的斜率為,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的左、右焦點(diǎn)坐標(biāo)分別是(-,0),(,0),離心率是.直線y=t與橢圓C交于不同的兩點(diǎn)M,N,以線段MN為直徑作圓P,圓心為P.
(1)求橢圓C的方程;
(2)若圓P與x軸相切,求圓心P的坐標(biāo);
(3)設(shè)Q(x,y)是圓P上的動(dòng)點(diǎn),當(dāng)t變化時(shí),求y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

橢圓E:+=1(a>b>0)的左、右焦點(diǎn)分別為F1,F2,焦距為2,過F1作垂直于橢圓長軸的弦PQ,|PQ|為3.
(1)求橢圓E的方程;
(2)若過F1的直線l交橢圓于A,B兩點(diǎn),判斷是否存在直線l使得∠AF2B為鈍角,若存在,求出l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線-=1(b∈N*)的左、右兩個(gè)焦點(diǎn)為F1、F2,P是雙曲線上的一點(diǎn),且滿足|PF1||PF2|=|F1F2|2,|PF2|<4.
(1)求b的值;
(2)拋物線y2=2px(p>0)的焦點(diǎn)與該雙曲線的右頂點(diǎn)重合,斜率為1的直線經(jīng)過右頂點(diǎn),與該拋物線交于A、B兩點(diǎn),求弦長|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓C:+=1(a>b>0)過點(diǎn)(0,4),離心率為.
(1)求C的方程;
(2)求過點(diǎn)(3,0)且斜率為的直線被C所截線段的中點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

過橢圓的左頂點(diǎn)作斜率為2的直線,與橢圓的另一個(gè)交點(diǎn)為,與軸的交點(diǎn)為,已知.
(1)求橢圓的離心率;
(2)設(shè)動(dòng)直線與橢圓有且只有一個(gè)公共點(diǎn),且與直線相交于點(diǎn),若軸上存在一定點(diǎn),使得,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:+=1(a>b>0).
(1)若橢圓的長軸長為4,離心率為,求橢圓的標(biāo)準(zhǔn)方程.
(2)在(1)的條件下,設(shè)過定點(diǎn)M(0,2)的直線l與橢圓C交于不同的兩點(diǎn)A,B,且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍.
(3)過原點(diǎn)O任意作兩條互相垂直的直線與橢圓+=1(a>b>0)相交于P,S,R,Q四點(diǎn),設(shè)原點(diǎn)O到四邊形PQSR一邊的距離為d,試求d=1時(shí)a,b滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

雙曲線C與橢圓=1有相同的焦點(diǎn),直線y=x為C的一條漸近線.求雙曲線C的方程.

查看答案和解析>>

同步練習(xí)冊答案