【題目】已知,函數(shù).
(1)討論的單調(diào)性;
(2)若有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
【答案】(1)詳見(jiàn)解析;(2).
【解析】
(1)的定義域?yàn)?/span>,.對(duì)a分類討論,解不等式即可得到的單調(diào)性;
(2)利用(1)中的單調(diào)性轉(zhuǎn)化為研究函數(shù)的最值問(wèn)題.
解:(1)的定義域?yàn)?/span>,.
①當(dāng)時(shí),,令,得;令,得,
所以在上單調(diào)遞增,上單調(diào)遞減.
②當(dāng)時(shí),,
當(dāng),即時(shí),因?yàn)?/span>,所以在上單調(diào)遞增;
當(dāng),即時(shí),因?yàn)?/span>,所以在上單調(diào)遞增;在上單調(diào)遞減,在上單調(diào)遞增;
當(dāng),即時(shí),因?yàn)?/span>,所以在上單調(diào)遞增;在上單調(diào)遞減,在上單調(diào)遞增.
(2)由(1)知當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減,
要使有兩個(gè)零點(diǎn),只要,所以.(因?yàn)楫?dāng)時(shí),,當(dāng)時(shí),)
下面我們討論當(dāng)時(shí)的情形:
當(dāng),即時(shí),在上單調(diào)遞增,不可能有兩個(gè)零點(diǎn);
當(dāng),即時(shí),因?yàn)?/span>,
所以在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增;
因?yàn)?/span>,,所以,沒(méi)有兩個(gè)零點(diǎn);
當(dāng)時(shí),即時(shí),因?yàn)?/span>,
所以在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,
,,沒(méi)有兩個(gè)零點(diǎn).
綜上所述:當(dāng)時(shí),有兩個(gè)零點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線和曲線的極坐標(biāo)方程;
(2)已知射線(),將射線順時(shí)針?lè)较蛐D(zhuǎn)得到:,且射線與曲線交于兩點(diǎn),射線與曲線交于兩點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某臍橙種植基地記錄了10棵臍橙樹在未使用新技術(shù)的年產(chǎn)量(單位:)和使用了新技術(shù)后的年產(chǎn)量的數(shù)據(jù)變化,得到表格如下:
未使用新技術(shù)的10棵臍橙樹的年產(chǎn)量
第一棵 | 第二棵 | 第三棵 | 第四棵 | 第五棵 | 第六棵 | 第七棵 | 第八棵 | 第九棵 | 第十棵 | |
年產(chǎn)量 | 30 | 32 | 30 | 40 | 40 | 35 | 36 | 45 | 42 | 30 |
使用了新技術(shù)后的10棵臍橙樹的年產(chǎn)量
第一棵 | 第二棵 | 第三棵 | 第四棵 | 第五棵 | 第六棵 | 第七棵 | 第八棵 | 第九棵 | 第十棵 | |
年產(chǎn)量 | 40 | 40 | 35 | 50 | 55 | 45 | 42 | 50 | 51 | 42 |
已知該基地共有20畝地,每畝地有50棵臍橙樹.
(1)估計(jì)該基地使用了新技術(shù)后,平均1棵臍橙樹的產(chǎn)量;
(2)估計(jì)該基地使用了新技術(shù)后,臍橙年總產(chǎn)量比未使用新技術(shù)將增產(chǎn)多少?
(3)由于受市場(chǎng)影響,導(dǎo)致使用新技術(shù)后臍橙的售價(jià)由原來(lái)(未使用新技術(shù)時(shí))的每千克10元降為每千克9元,試估計(jì)該基地使用新技術(shù)后臍橙年總收入比原來(lái)增加的百分?jǐn)?shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]:在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線,的直角坐標(biāo)方程;
(2)判斷曲線,是否相交,若相交,請(qǐng)求出交點(diǎn)間的距離;若不相交,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿足.
(1)若,證明:
(i)當(dāng)時(shí),有;
(ii)當(dāng)時(shí),有.
(2)若,證明:當(dāng)時(shí),有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“一本書,一碗面,一條河,一座橋”曾是蘭州的城市名片,而現(xiàn)在“蘭州馬拉松”又成為了蘭州的另一張名片,隨著全民運(yùn)動(dòng)健康意識(shí)的提高,馬拉松運(yùn)動(dòng)不僅在蘭州,而且在全國(guó)各大城市逐漸興起,參與馬拉松訓(xùn)練與比賽的人口逐年增加.為此,某市對(duì)人們參加馬拉松運(yùn)動(dòng)的情況進(jìn)行了統(tǒng)計(jì)調(diào)查.其中一項(xiàng)調(diào)查是調(diào)查人員從參與馬拉松運(yùn)動(dòng)的人中隨機(jī)抽取200人,對(duì)其每周參與馬拉松長(zhǎng)跑訓(xùn)練的天數(shù)進(jìn)行統(tǒng)計(jì),得到以下統(tǒng)計(jì)表:
平均每周進(jìn)行長(zhǎng)跑訓(xùn)練天數(shù) | 不大于2天 | 3天或4天 | 不少于5天 |
人數(shù) | 30 | 130 | 40 |
若某人平均每周進(jìn)行長(zhǎng)跑訓(xùn)練天數(shù)不少于5天,則稱其為“熱烈參與者”,否則稱為“非熱烈參與者”.
(1)經(jīng)調(diào)查,該市約有2萬(wàn)人參與馬拉松運(yùn)動(dòng),試估計(jì)其中“熱烈參與者”的人數(shù);
(2)根據(jù)上表的數(shù)據(jù),填寫下列2×2列聯(lián)表,并通過(guò)計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“熱烈參與馬拉松”與性別有關(guān)?
熱烈參與者 | 非熱烈參與者 | 合計(jì) | |
男 | 140 | ||
女 | 55 | ||
合計(jì) |
附:k2=(n為樣本容量)
P(k2≥k0) | 0.500 | 0.400 | 0.250 | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】求滿足如下條件的最小正整數(shù):在的圓周上任取個(gè)點(diǎn),則在個(gè)中,至少有2007個(gè)不超過(guò).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com