計算下列各式的值.
(1)lg12.5-lg
5
8
+lg
1
2

(2)2log510+log50.25;
(3)2log32-log3
32
9
+log38-3.
分析:(1)利用對數(shù)的運算性質可求得原式=lg10=1;
(2)同理可求得原式=2log55=2;
(3)利用商、冪的對數(shù)的運算性質即可求得答案.
解答:解:(1)lg12.5-lg
5
8
+lg
1
2
=lg(12.5÷
5
8
×
1
2
)=lg10=1;
(2)2log510+log50.25=log5102+log50.25=log5(102×0.25)=log525=log552=2log55=2×1=2;
(3)2log32-log3
32
9
+log38-3
=2log32-(log332-log39)+log323-3
=2log32-log325+log332+3log32-3
=2log32-5log32+2+3log32-3
=-1.
點評:本題考查對數(shù)的運算性質,熟練掌握積、商、冪的對數(shù)的運算性質是解決問題的關鍵,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

計算下列各式的值:
(1)71+log75;
(2)10lg9+lg2;
(3)alogabblogbc(其中a,b為不等于1的正數(shù),c>0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算下列各式的值:
(1)
3(-4)3
-(
1
2
)
0
+0.25
1
2
×(
-1
2
)
-4
;      (2)
2lg2+lg3
1+
1
2
lg0.36+
1
3
lg8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算下列各式的值:
(1)(0.0081) -
1
4
-[3×(
7
8
0]-1•[81-0.25+(3
3
8
 -
1
3
] -
1
2
-10×0.027 
1
3

(2)
(1-log63)2+log62•log618
log64

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算下列各式的值:
(1)lg24-(lg3+lg4)+lg5;
(2)已知tanα=2,求
sin(α+3π)+cos(π+α)sin(-α)-cos(π+α)
的值.

查看答案和解析>>

同步練習冊答案