已知向量
OA
=(cosα,sinα)
,把向量
OA
繞坐標原點O按逆時針方向旋圍θ角得到向量
OB
(0°<θ<90°)
,則下列說法不正確的為( 。
分析:如圖,作出以OA、OB為鄰邊的平行四邊形OACB,根據(jù)題意可得到四邊形OACB是菱形且不是矩形.然后根據(jù)矩形的對角線相等,得到A項不正確;根據(jù)三角形兩邊之和大于第三邊,得到B項正確;根據(jù)菱形的對角線互相垂直得到C項正確;根據(jù)菱形的性質和向量投影的概念,得到D項正確.由此得到正確答案.
解答:解:如圖,根據(jù)向量加法的平等四邊形法則,可得
設OC是以OA、OB為鄰邊的平等四邊形的對角線,則有
OA
+
OB
=
OC
,
又由向量減法的三角形法則,得
OA
-
OB
=
BA

由于向量
OA
繞坐標原點O按逆時針方向旋圍θ角得到向量
OB
,
且角θ∈(0°,90°),所以四邊形OACB是菱形且不是矩形.
接下來說明各項的正誤及其原因:
對于A,由于四邊形OACB不是矩形,它的對角線不相等,即
|OC|
|BA |
,
也就是|
OA
+
OB
|≠|
OA
-
OB
|
,故A不正確;
對于B,在三角形OAC中,有
|OA|
+
|AC|
|OC|
,而向量
AC
=
OB
,因此有|
OA
|+|
OB
|>|
OA
-
OB
|
,故B正確;
對于C,因為四邊形OACB是菱形,所以對角線BA與OC互相垂直,因此有(
OA
+
OB
)⊥(
OA
-
OB
)
,故C正確;
對于D,根據(jù)向量數(shù)量積的幾何意義,得到
OA
OC
上的投影等于
|OA|
cos∠COA

OB
OC
上的投影等于
|OB|
cos∠COB
,因為四邊形OACB是菱形,所以OC是∠AOB的平分線,即cos∠COA=cos∠COB,所以有
|OA|
cos∠COA=
|OB|
cos∠COB
,
可得
OA
、
OB
OA
+
OB
方向上的投影相等,故D正確.
綜上所述,中只有A項是不正確的.
故選A
點評:本題借助于一個向量的旋轉得到另一個向量,來判斷它們和和向量與差向量的位置關系與大小比較,著重考查了向量加法、減法的法則和向量投影的概念,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知下列各式:
AB
+
BC
+
CA
;            
AB
+
MB
+
BO
+
OM

AB
-
AC
+
BD
-
CD

OA
+
OC
+
BO
+
CO

其中結果為零向量的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知下列各式:
AB
+
BC
+
CA
;            
AB
+
MB
+
BO
+
OM

AB
-
AC
+
BD
-
CD

OA
+
OC
+
BO
+
CO

其中結果為零向量的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案