已知定義在上的函數(shù),對(duì)任意的,都有成立,若函數(shù)的圖象關(guān)于直線對(duì)稱,則

A. B. C. D. 

A

解析試題分析:由函數(shù)f(x+1)的圖象關(guān)于直線x=-1對(duì)稱且由y=f(x+1)向右平移1個(gè)單位可得y=f(x)的圖象可知函數(shù)y=f(x)的圖象關(guān)于x=0對(duì)稱即函數(shù)y=f(x)為偶函數(shù),在已知條件中令x=-8可求f(8)及函數(shù)的周期,利用所求周期即可求解。解:∵函數(shù)f(x+1)的圖象關(guān)于直線x=-1對(duì)稱且把y=f(x+1)向右平移1個(gè)單位可得y=f(x)的圖象,∴函數(shù)y=f(x)的圖象關(guān)于x=0對(duì)稱,即函數(shù)y=f(x)為偶函數(shù),因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/53/b/1f2jm2.png" style="vertical-align:middle;" />成立,則令x=-3,則可知f(3)="f(-3)+" f(3), 0=f(-3),從而可得f(x+6)=f(x)即函數(shù)是以6為周期的周期函數(shù),故,故答案為A.
考點(diǎn):函數(shù)性質(zhì)的運(yùn)用
點(diǎn)評(píng):本題主要考出了函數(shù)的圖象的平移及函數(shù)圖象的對(duì)稱性的應(yīng)用,利用賦值求解抽象函數(shù)的函數(shù)值,函數(shù)周期的求解是解答本題的關(guān)鍵所在

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:單選題

若函數(shù)恰有三個(gè)不同的零點(diǎn),則實(shí)數(shù)a的值是(   )

A.-1B.C.1或D.-1或-

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

下列函數(shù)中,在區(qū)間(0,1)上是增函數(shù)的是(    )

A.y=- B.y=logx
C.y= D.y=-x2-2x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知函數(shù)是定義在R上的奇函數(shù),當(dāng)時(shí),為常數(shù)),則函數(shù)的大致圖象為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

函數(shù)的遞增區(qū)間是(   )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知函數(shù)是R上的奇函數(shù),若對(duì)于,都有
時(shí),的值為(  )

A. B. C.1 D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

若函數(shù)上不是單調(diào)函數(shù),則函數(shù)在區(qū)間上的圖象可能是             (   )

A.①③ B.②④ C.②③ D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

若函數(shù),則=                                  (   )

A.2B.4C.D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

設(shè)f(x)= , g(x)= 則f(g())的值為(     )

A.1 B.0 C.-1 D.

查看答案和解析>>

同步練習(xí)冊(cè)答案