已知正項(xiàng)數(shù)列中,其前項(xiàng)和為,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)是數(shù)列的前項(xiàng)和,是數(shù)列的前項(xiàng)和,求證:.

(1);(2)證明過(guò)程詳見(jiàn)解析.

解析試題分析:本題主要考查等差數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式、放縮放、累加法等基礎(chǔ)知識(shí),考查學(xué)生的分析問(wèn)題解決問(wèn)題的能力、計(jì)算能力、轉(zhuǎn)化能力.第一問(wèn),法一,利用轉(zhuǎn)化已知表達(dá)式中的,證明數(shù)列為等差數(shù)列,通過(guò),再求;法二,利用轉(zhuǎn)化,證明數(shù)列為等差數(shù)列,直接得到的通項(xiàng)公式;第二問(wèn),要證,只需要證中每一項(xiàng)都小于中的每一項(xiàng),利用放縮法,先得到,,只需證,通過(guò)放縮法、累加法證明不等式.
(1)法一:由
當(dāng)時(shí),,且,故               1分
當(dāng)時(shí),,故,得,
∵正項(xiàng)數(shù)列,
                           4分
是首項(xiàng)為,公差為的等差數(shù)列.
∴  ,
∴  .                       6分
法二:
當(dāng)時(shí),,且,故              1分
,                 2分
當(dāng)時(shí),
∴ ,
整理得 
∵正項(xiàng)數(shù)列,,
∴ ,                           5分
是以為首項(xiàng),為公差的等差數(shù)列,
∴  .                           6分
(2)證明:先證:        7分
.
故只需證,              9分
因?yàn)閇]2

所以                  12分
所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列滿足,.
(1)求證:為等差數(shù)列,并求出的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,對(duì)任意都有成立,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{an}是公差不為0的等差數(shù)列,a1=2,且a2,a3,a4+1成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=an+2an,求數(shù)列{bn}的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列是等差數(shù)列,,前四項(xiàng)和。
(1)求數(shù)列的通項(xiàng)公式;
(2)記,計(jì)算

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的各項(xiàng)均為正數(shù),記,,
 .
(1)若,且對(duì)任意,三個(gè)數(shù)組成等差數(shù)列,求數(shù)列的通項(xiàng)公式.
(2)證明:數(shù)列是公比為的等比數(shù)列的充分必要條件是:對(duì)任意,三個(gè)數(shù)組成公比為的等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{an}滿足an+1=(n∈N*),且a1=.
(1)求證:數(shù)列是等差數(shù)列,并求an.
(2)令bn=(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在無(wú)窮數(shù)列中,,對(duì)于任意,都有. 設(shè), 記使得成立的的最大值為.
(1)設(shè)數(shù)列為1,3,5,7,,寫出,,的值;
(2)若為等差數(shù)列,求出所有可能的數(shù)列
(3)設(shè),,求的值.(用表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(1) 為等差數(shù)列的前項(xiàng)和,,求;
(2)在等比數(shù)列中,若,求首項(xiàng)和公比

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列為等比數(shù)列,其前n項(xiàng)和為,且滿足,成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)已知,記,求數(shù)列前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案