二次函數(shù)f(x)=

(I)若方程f(x)=0無實數(shù)根,求證:b>0;

(II)若方程f(x)=0有兩實數(shù)根,且兩實根是相鄰的兩個整數(shù),求證:f(-a)=;

(III)若方程f(x)=0有兩個非整數(shù)實根,且這兩實數(shù)根在相鄰兩整數(shù)之間,試證明存在整數(shù)k,使得.

證明見解析


解析:

(I)(3分)

(II)設(shè)兩整根為x1,x2,x1>x2

              

         (5分)

(III)設(shè)m<x1<x2<m+1,m為整數(shù)。

 即

f(m)=

f(m+1)=

       (6分)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+(a2+2)x-
14
在x=2處的切線斜率為2,則該函數(shù)的最大值為
20
20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若二次函數(shù)f(x)=a
x
2
 
+bx+c(a≠0)
的圖象和直線y=x無交點,現(xiàn)有下列結(jié)論:
①方程f[f(x)]=x一定沒有實數(shù)根;
②若a>0,則不等式f[f(x)]>x對一切實數(shù)x都成立;
③若a<0,則必存存在實數(shù)x0,使f[f(x0)]>x0
④若a+b+c=0,則不等式f[f(x)]<x對一切實數(shù)都成立;
⑤函數(shù)g(x)=a
x
2
 
-bx+c
的圖象與直線y=-x也一定沒有交點.
其中正確的結(jié)論是
①②④⑤
①②④⑤
(寫出所有正確結(jié)論的編號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c,函數(shù)y=f(x)+
2
3
x-1
的圖象過原點且關(guān)于y軸對稱,記函數(shù) h(x)=
x
f(x)

(I)求b,c的值;
(Ⅱ)當(dāng)a=
1
10
時,求函數(shù)y=h(x)
的單調(diào)遞減區(qū)間;
(Ⅲ)試討論函數(shù) y=h(x)的圖象上垂直于y軸的切線的存在情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=
1
2
x2+
3
2
x
,數(shù)列{an}的前n和Sn,點(n,Sn)(n∈N*)在函數(shù)y=f(x)的圖象上.
(1)求{an}的通項公式
(2)設(shè)bn=
1
anan+1
,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+1和g(x)=
bx-1a2x+2b

(1)f(x)為偶函數(shù),試判斷g(x)的奇偶性;
(2)若方程g(x)=x有兩個不相等的實根,當(dāng)a>0時判斷f(x)在(-1,1)上的單調(diào)性;
(3)若方程g(x)=x的兩實根為x1,x2f(x)=0的兩根為x3,x4,求使x3<x1<x2<x4成立的a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案