(滿分12分)設(shè)底面邊長為的正四棱柱中,與平面 所成角為;點是棱上一點.
(1)求證:正四棱柱是正方體;
(2)若點在棱上滑動,求點到平面距離的最大值;
(3)在(2)的條件下,求二面角的大。
(1).證明:見解析;(2)點到平面的最大距離是;(3).
【解析】本試題主要考查了立體幾何中正方體概念,和點到面的距離的最值和二面角的求解和運算的綜合試題。
(1)利用正四棱柱的性質(zhì),加上題目中的邊的關(guān)系,結(jié)合概念得到。
(2)對于點到面的距離關(guān)鍵是找到平面的垂線,利用面面垂直的性質(zhì)定理得到點到面的距離的表示,從而求解最值。
(3)建立合理的空間直角坐標(biāo)系,然后設(shè)出法向量來表示二面角的平面角的大小來解決。
(1).證明:設(shè)正四棱柱的側(cè)棱長為,作與,連接,
,,,
是與所成的角,
,即
所以四棱柱正四棱柱是正方體;......................4'
(2).設(shè)點到平面的距離為,平面,點、到平面的距離相等為.在四面體中,體積,
,設(shè)是中點,當(dāng)也是棱中點時,,有平面,于,于,是一面直線和的公垂線段,是到直線的最短距離,的最小值是
,即點到平面的最大距離是.....................8'
(3).以 為原點,、、分別為、、軸建立平面直角坐標(biāo)系,由(2)知也是棱中點,則、、、,設(shè)平面的法向量,平面的法向量由
;
。
面角的大小是.............................12'
科目:高中數(shù)學(xué) 來源: 題型:
()(本小題滿分12分)如圖,已知平面平行于三棱錐的底面,等邊三角形所在平面與面垂直,且,設(shè)。
(Ⅰ)證明:為異面直線與的公垂線;
(Ⅱ)求點與平面的距離;
(Ⅲ)求二面角的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河北省高三一輪檢測復(fù)習(xí)數(shù)學(xué)理卷 題型:解答題
(本小題滿分12分)
如圖,側(cè)棱垂直底面的三棱柱的底面位于平行四邊形中,,,,點為中點。
(Ⅰ)求證:平面平面;
(Ⅱ)設(shè)二面角的大小為,直線與
平面所成的角為,求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣西省高三高考模擬考試?yán)頂?shù) 題型:解答題
(本小題滿分12分)(注意:在試題卷上作答無效)
在四棱錐中,側(cè)面底面,,底面是直角梯形,,,,.
(Ⅰ)求證:平面;
(Ⅱ)設(shè)為側(cè)棱上一點,,
試確定的值,使得二面角為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年四川省成都市高二3月月考數(shù)學(xué)試卷 題型:填空題
(本小題滿分12分)
已知平行六面體中,
各條棱長均為,底面是正方形,且,
設(shè),,,
(1)用、、表示及求;
(2)求異面直線與所成的角的余弦值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com