【題目】某商店經(jīng)營的某種消費(fèi)品的進(jìn)價(jià)為每件14元,月銷售量(百件)與每件的銷售價(jià)格(元)的關(guān)系如圖所示,每月各種開支2 000元.

(1)寫出月銷售量(百件)關(guān)于每件的銷售價(jià)格(元)的函數(shù)關(guān)系式.

(2)寫出月利潤(元)與每件的銷售價(jià)格(元)的函數(shù)關(guān)系式.

(3)當(dāng)該消費(fèi)品每件的銷售價(jià)格為多少元時(shí),月利潤最大?并求出最大月利潤.

【答案】(1) ;(2) ;(3) 當(dāng)該消費(fèi)品每件的銷售價(jià)格為學(xué)時(shí),月利潤最大,為4050元

【解析】

1)根據(jù)函數(shù)的圖象為分段函數(shù),分別求得當(dāng)時(shí),求得函數(shù)的解析式,即可得到答案;

(2)由(1)中的函數(shù),結(jié)合題意,即可求得月利潤(元)與每件的銷售價(jià)格(元)的函數(shù)關(guān)系式.

(3)由(2)中的解析式,結(jié)合二次函數(shù)的性質(zhì),分別求得當(dāng)的最大值,即可求解.

(1)由題意,當(dāng)時(shí),設(shè)函數(shù),

,解得,所以,

同理可得當(dāng)時(shí),,

所以

(2)當(dāng)時(shí),,

;

當(dāng)時(shí),,

所以

(3)由(2)中的解析式和二次函數(shù)的知識,可得

當(dāng)時(shí),則時(shí),取到最大值,為4050;

當(dāng)時(shí),則時(shí),取到最大值,為

又由,所以當(dāng)該消費(fèi)品每件的銷售價(jià)格為學(xué)時(shí),月利潤最大,為4050元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠家擬在2020年舉行促銷活動(dòng),經(jīng)調(diào)查測算,某產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)萬件與年促銷費(fèi)用萬元,滿足為常數(shù)),如果不搞促銷活動(dòng),則該產(chǎn)品的年銷售量只能是1萬件,已知2020年生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)1萬件,該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價(jià)格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).

1)將2020年該產(chǎn)品的利潤(萬元)表示為年促銷費(fèi)用(萬元)的函數(shù);

2)該廠家2020年的促銷費(fèi)用投入多少萬元時(shí),廠家的利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的零點(diǎn)個(gè)數(shù);

(2)已知,證明:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)當(dāng)時(shí),

①若曲線與直線相切,求c的值;

②若曲線與直線有公共點(diǎn),求c的取值范圍.

(2)當(dāng)時(shí),不等式對于任意正實(shí)數(shù)x恒成立,當(dāng)c取得最大值時(shí),求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在上是增函數(shù).

1)已知,利用上述性質(zhì),求的單調(diào)區(qū)間和值域;

2)對于(1)中的函數(shù)和函數(shù),若對任意的,總存在使得成立,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年5月,來自“一帶一路”沿線的國青年評選出了中國的“新四大發(fā)明”:高鐵、掃碼支付、共享單車和網(wǎng)購.為發(fā)展業(yè)務(wù),某調(diào)研組對兩個(gè)公司的掃碼支付準(zhǔn)備從國內(nèi) 個(gè)人口超過萬的超大城市和個(gè)人口低于萬的小城市隨機(jī)抽取若干個(gè)進(jìn)行統(tǒng)計(jì),若一次抽取個(gè)城市,全是小城市的概率為.

(I)求的值;

(Ⅱ)若一次抽取個(gè)城市,則:

①假設(shè)取出小城市的個(gè)數(shù)為,求的分布列和期望;

②取出個(gè)城市是同一類城市求全為超大城市的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】峰谷電是目前在城市居民當(dāng)中開展的一種電價(jià)類別.它是將一天24小時(shí)劃分成兩個(gè)時(shí)間段,把8:00—22:00共14小時(shí)稱為峰段,執(zhí)行峰電價(jià),即電價(jià)上調(diào);22:00—次日8:00共10個(gè)小時(shí)稱為谷段,執(zhí)行谷電價(jià),即電價(jià)下調(diào).為了進(jìn)一步了解民眾對峰谷電價(jià)的使用情況,從某市一小區(qū)隨機(jī)抽取了50 戶住戶進(jìn)行夏季用電情況調(diào)查,各戶月平均用電量以,,,(單位:度)分組的頻率分布直方圖如下圖:

若將小區(qū)月平均用電量不低于700度的住戶稱為“大用戶”,月平均用電量低于700度的住戶稱為“一般用戶”.其中,使用峰谷電價(jià)的戶數(shù)如下表:

月平均用電量(度)

使用峰谷電價(jià)的戶數(shù)

3

9

13

7

2

1

(1)估計(jì)所抽取的 50戶的月均用電量的眾數(shù)和平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(2)()將“一般用戶”和“大用戶”的戶數(shù)填入下面的列聯(lián)表:

一般用戶

大用戶

使用峰谷電價(jià)的用戶

不使用峰谷電價(jià)的用戶

()根據(jù)()中的列聯(lián)表,能否有的把握認(rèn)為 “用電量的高低”與“使用峰谷電價(jià)”有關(guān)?

0.025

0.010

0.001

5.024

6.635

10.828

附:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三角形兩邊長分別為,第三邊上的中線長為,則三角形的外接圓半徑為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 經(jīng)過點(diǎn),焦距為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)直線與橢圓交于不同的兩點(diǎn)、,線段的垂直平分線交軸交于點(diǎn),若,求的值.

查看答案和解析>>

同步練習(xí)冊答案