【題目】設(shè)函數(shù)f(x)= (a>0且a≠1)是定義域為R的奇函數(shù).
(1)求t的值;
(2)若f(1)>0,求使不等式f(kx﹣x2)+f(x﹣1)<0對一切x∈R恒成立的實數(shù)k的取值范圍;
(3)若函數(shù)f(x)的圖象過點(diǎn)(1, ),是否存在正數(shù)m,且m≠1使函數(shù)g(x)=logm[a2x+a2x﹣mf(x)]在[1,log23]上的最大值為0,若存在,求出m的值,若不存在,請說明理由.

【答案】
(1)解:f(x)是定義域為R的奇函數(shù)

∴f(0)=0,

∴t=2


(2)解:由(1)得f(x)=ax﹣ax,

∵f(1)>0得 又a>0

∴a>1,

由f(kx﹣x2)+f(x﹣1)<0得f(kx﹣x2)<﹣f(x﹣1),

∵f(x)為奇函數(shù),

∴f(kx﹣x2)<f(1﹣x),

∵a>1∴f(x)=ax﹣ax為R上的增函數(shù),

∴kx﹣x2<1﹣x對一切x∈R恒成立,即x2﹣(k+1)x+1>0對一切x∈R恒成立

故△=(k+1)2﹣4<0解得﹣3<k<1


(3)解:函數(shù)f(x)的圖象過點(diǎn)(1, ),

∴a=2,假設(shè)存在正數(shù)m,且m≠1符合題意,由a=2得 = =

設(shè)t=2x﹣2x則(2x﹣2x2﹣m(2x﹣2x)+2=t2﹣mt+2,

∵x∈[1,log23],

記h(t)=t2﹣mt+2,

∵函數(shù) 在[1,log23]上的最大值為0,

∴(。┤0<m<1時,則函數(shù)h(t)=t2﹣mt+2在 有最小值為1

由于對稱軸 ,不合題意

(ⅱ)若m>1時,則函數(shù)h(t)=t2﹣mt+2>0在 上恒成立,且最大值為1,最小值大于0

又此時 ,

故g(x)在[1,log23]無意義

所以

無解,

綜上所述:故不存在正數(shù)m,使函數(shù) 在[1,log23]上的最大值為0


【解析】(1)由奇函數(shù)的性質(zhì)可知f(0)=0,得出t=2;(2)由f(1)>0得 又a>0,求出a>1,判斷函數(shù)的單調(diào)性f(x)=ax﹣ax為R上的增函數(shù),不等式整理為x2﹣(k+1)x+1>0對一切x∈R恒成立,利用判別式法求解即可;(3)把點(diǎn)代入求出a=2,假設(shè)存在正數(shù)m,構(gòu)造函數(shù)設(shè)t=2x﹣2x則(2x﹣2x2﹣m(2x﹣2x)+2=t2﹣mt+2,對底數(shù)m進(jìn)行分類討論,判斷m的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某城市有一塊半徑為40m的半圓形O為圓心,AB為直徑綠化區(qū)域,現(xiàn)計劃對其進(jìn)行改建.在AB的延長線上取點(diǎn)D,使OD=80m,在半圓上選定一點(diǎn)C,改建后的綠化區(qū)域由扇形區(qū)域AOC和三角形區(qū)域COD組成,其面積為S m2. 設(shè)∠AOC=x rad.

(1)寫出S關(guān)于x的函數(shù)關(guān)系式S(x),并指出x的取值范圍;

(2)張強(qiáng)同學(xué)說:當(dāng)∠AOC=時,改建后的綠化區(qū)域面積S最大.張強(qiáng)同學(xué)的說法正確嗎?若不正確,請求出改建后的綠化區(qū)域面積S最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|< )的最小正周期為2 π,最小值為﹣2,且當(dāng)x= 時,函數(shù)取得最大值4. (I)求函數(shù) f(x)的解析式;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)若當(dāng)x∈[ , ]時,方程f(x)=m+1有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,△ABC中,已知頂點(diǎn)A(3,﹣1),∠B的內(nèi)角平分線方程是x﹣4y+10=0過點(diǎn)C的中線方程為6x+10y﹣59=0.求頂點(diǎn)B的坐標(biāo)和直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,∠ABC= ,PA⊥底面ABCD,PA=AB=2,M為PA的中點(diǎn),N為BC的中點(diǎn)

(1)證明:直線MN∥平面PCD;
(2)求異面直線AB與MD所成角的余弦值;
(3)求點(diǎn)B到平面PCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,內(nèi)角A,B,C所對的邊分別為,b,c,且acosC+ c=b,若a=1, c﹣2b=1,則角C為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“a≥3 ”是“直線l:2ax﹣y+2a2=0(a>0)與雙曲線C: =1的右支無交點(diǎn)”的(
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}滿足an+1+an=4n﹣3(n∈N*
(Ⅰ)若{an}是等差數(shù)列,求其通項公式;
(Ⅱ)若{an}滿足a1=2,Sn為{an}的前n項和,求S2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的一條對稱軸為,且最高點(diǎn)的縱坐標(biāo)是

(1)求的最小值及此時函數(shù)的最小正周期、初相;

(2)在(1)的情況下,設(shè),求函數(shù)上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案