若函數(shù)滿足=||,則稱為對等函數(shù),
(1)存在冪函數(shù)是對等函數(shù);
(2)存在指數(shù)函數(shù)是對等函數(shù);
(3)對等函數(shù)的積是對等函數(shù).
那么,在上述命題中,真命題的個數(shù)是(     )
A.0;B.1;C.2;D.3.
C
本題考查學(xué)生綜合解決函數(shù)問題的能力
設(shè),則有,,所以,即存在冪函數(shù)是對等函數(shù),故(1)正確;
設(shè),則有,,而,但,即不存在指數(shù)函數(shù)是對等函數(shù),故(2)不正確;
設(shè)是對等函數(shù),則,則
所以
所以
所以(3)正確
故正確答案為C
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)二次方程有兩個實根,
且滿足
(1)試用表示
(2)求證:是等比數(shù)列;
(3)當(dāng)時,求數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù),若,則         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)已知函數(shù)是其定義域內(nèi)的奇函數(shù),且
18
(1)求fx)的表達(dá)式;
(2)設(shè) (x > 0 )
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)足球場寬65米,球門寬7米,當(dāng)足球運動員沿邊路帶球突破,距底線多遠(yuǎn)處射門,對球門所張的角最大?(保留兩位小數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)。
(1)若函數(shù)上的增函數(shù),求實數(shù)的取值范圍;
(2)當(dāng)時,若不等式在區(qū)間上恒成立,求實數(shù)的取值范圍;
(3)對于函數(shù)若存在區(qū)間,使時,函數(shù)的值域也是,則稱上的閉函數(shù)。若函數(shù)是某區(qū)間上的閉函數(shù),試探求應(yīng)滿足的條件。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

把邊長為a的等邊三角形鐵皮如圖(1)剪去三個相同的四邊形(如圖陰影部分)后,用剩余部分做成一個無蓋的底面為正三角形的直棱柱形容器(不計接縫)如圖(2),設(shè)容器的高為x,容積為
(Ⅰ)寫出函數(shù)的解析式,并求出函數(shù)的定義域;
(Ⅱ)求當(dāng)x為多少時,容器的容積最大?并求出最大容積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

對于任意的,均有),求關(guān)于的方程 
的根的范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)是R上的奇函數(shù)。
(Ⅰ)求a的值;   (Ⅱ)求的反函數(shù);
(Ⅲ)若k,解不等式: 

查看答案和解析>>

同步練習(xí)冊答案