【題目】已知在三角形ABC中,AB<AC,∠BAC=90°,邊AB,AC的長分別為方程 的兩個實數(shù)根,若斜邊BC上有異于端點的E,F(xiàn)兩點,且EF=1,∠EAF=θ,則tanθ的取值范圍為( )
A.
B.
C.
D.
【答案】C
【解析】解:∵邊AB,AC的長分別為方程 的兩個實數(shù)根∴AC=2 ,AB=2, 在直角△ABC中,B= ,C= ,BC=4
建立如圖所示的坐標系,可得A(0,0),B(2,0),C(0,2 ),
得直線BC的方程為y= ,故設E(a, (2﹣a)),F(xiàn)(b, (2﹣b)),a>b, <a<2.
則由EF= =2(a﹣b)=1,可得b=a﹣ .
∴tan∠BAE= ,tan∠BAF= .
∴tanθ=tan(∠BAF﹣∠BAE)= =﹣ = .
由 <a<2和二次函數(shù)的性質(zhì)可得t=4a2﹣14a+15∈[ ,9),∴ ∈( , ].
故選:C.
科目:高中數(shù)學 來源: 題型:
【題目】“共享單車”的出現(xiàn),為我們提供了一種新型的交通方式.某機構(gòu)為了調(diào)查人們對此種交通方式的滿意度,從交通擁堵不嚴重的A城市和交通擁堵嚴重的B城市分別隨機調(diào)查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖如圖:
(Ⅰ)根據(jù)莖葉圖,比較兩城市滿意度評分的平均值的大小及方差的大。ú灰笥嬎愠鼍唧w值,給出結(jié)論即可);
(Ⅱ)若得分不低于80分,則認為該用戶對此種交通方式“認可”,否則認為該用戶對此種交通方式“不認可”,請根據(jù)此樣本完成此2×2列聯(lián)表,并據(jù)此樣本分析是否有95%的把握認為城市擁堵與認可共享單車有關;
A | B | 合計 | |
認可 | |||
不認可 | |||
合計 |
(Ⅲ)若從此樣本中的A城市和B城市各抽取1人,則在此2人中恰有一人認可的條件下,此人來自B城市的概率是多少?
附:參考數(shù)據(jù):
(參考公式: )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線x2=2py和 ﹣y2=1的公切線PQ(P是PQ與拋物線的切點,未必是PQ與雙曲線的切點)與拋物線的準線交于Q,F(xiàn)(0, ),若 |PQ|= |PF|,則拋物線的方程是( )
A.x2=4y
B.x2=2 y
C.x2=6y
D.x2=2 y
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著網(wǎng)絡營銷和電子商務的興起,人們的購物方式更具多樣化,某調(diào)查機構(gòu)隨機抽取10名購物者進行采訪,5名男性購物者中有3名傾向于選擇網(wǎng)購,2名傾向于選擇實體店,5名女性購物者中有2名傾向于選擇網(wǎng)購,3名傾向于選擇實體店.
(1)若從10名購物者中隨機抽取2名,其中男、女各一名,求至少1名傾向于選擇實體店的概率;
(2)若從這10名購物者中隨機抽取3名,設X表示抽到傾向于選擇網(wǎng)購的男性購物者的人數(shù),求X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C1的參數(shù)方程為 (t為參數(shù)),以原點O為極點,以x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為 . (I)求曲線C2的直角坐標系方程;
(II)設M1是曲線C1上的點,M2是曲線C2上的點,求|M1M2|的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正△ABC三個頂點都在半徑為2的球面上,球心O到平面ABC的距離為1,點E是線段AB的中點,過點E作球O的截面,則截面面積的最小值是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著生活水平的提高,人們對空氣質(zhì)量的要求越來越高,某機構(gòu)為了解公眾對“車輛限行”的態(tài)度,隨機抽查50人,并將調(diào)查情況進行整理后制成如表:
年齡(歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,60) |
頻數(shù) | 10 | 10 | 10 | 10 | 10 |
贊成人數(shù) | 3 | 5 | 6 | 7 | 9 |
(1)世界聯(lián)合國衛(wèi)生組織規(guī)定:[15,45)歲為青年,(45,60)為中年,根據(jù)以上統(tǒng)計數(shù)據(jù)填寫以下2×2列聯(lián)表:
青年人 | 中年人 | 合計 | |
不贊成 |
|
|
|
贊成 |
|
|
|
合計 |
|
|
|
(2)判斷能否在犯錯誤的概率不超過0.05的前提下,認為贊成“車柄限行”與年齡有關? 附: ,其中n=a+b+c+d
獨立檢驗臨界值表:
P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 |
(3)若從年齡[15,25),[25,35)的被調(diào)查中各隨機選取1人進行調(diào)查,設選中的兩人中持不贊成“車輛限行”態(tài)度的人員為ξ,求隨機變量ξ的分布列和數(shù)學期望Eξ.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】德國著名數(shù)學家狄利克雷在數(shù)學領域成就顯著,以其名命名的函數(shù)f(x)= ,稱為狄利克雷函數(shù),則關于函數(shù)f(x)有以下四個命題: ①f(f(x))=1;
②函數(shù)f(x)是偶函數(shù);
③任意一個非零有理數(shù)T,f(x+T)=f(x)對任意x∈R恒成立;
④存在三個點A(x1 , f(x1)),B(x2 , f(x2)),C(x3 , f(x3)),使得△ABC為等邊三角形.
其中真命題的個數(shù)是( )
A.4
B.3
C.2
D.1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com