【題目】設(shè)等比數(shù)列的公比為,前項(xiàng)和.

(1)求的取值范圍;

(2)設(shè),記的前項(xiàng)和為,試比較的大小.

【答案】(1);

(2)時(shí), ; 時(shí), ; ,或時(shí), .

【解析】試題分析:

(1)可得,根據(jù)等比數(shù)列前n項(xiàng)和公式,當(dāng)時(shí), 分析分子分母同號(hào)異號(hào)的不同情況,解出的取值范圍,當(dāng)時(shí), 成立;(2)把的通項(xiàng)公式代入,可得的關(guān)系,進(jìn)而可知的關(guān)系,再根據(jù)(1)中的得范圍來判斷的大小.

試題解析:

(1)因?yàn)?/span>是等比數(shù)列, 可得.

當(dāng)時(shí), ,

當(dāng)時(shí),

上式等價(jià)于不等式組:

解①式得;解②,由于可為奇數(shù)、可為偶數(shù),得.

綜上, 的取值范圍是.

(2)由

, .

于是.

又因?yàn)?/span>,且,所以,

當(dāng)時(shí), ,即;

當(dāng)時(shí), ,即;

當(dāng),或時(shí), ,即.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:x2+y2﹣2x﹣2ay+a2﹣24=0(a∈R)的圓心在直線2x﹣y=0上.
(1)求實(shí)數(shù)a的值;
(2)求圓C與直線l:(2m+1)x+(m+1)y﹣7m﹣4=0(m∈R)相交弦長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,定義在[﹣1,5]上的函數(shù)f(x)由一段線段和拋物線的一部分組成. (Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)指出函數(shù)f(x)的自變量x在什么范圍內(nèi)取值時(shí),函數(shù)值大于0,小于0或等于0(不需說理由).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱柱ABC﹣A′B′C′中,平面BCC′B′⊥底面ABC,BB′⊥AC,底面ABC是邊長為2的等邊三角形,AA′=3,E、F分別在棱AA′,CC′上,且AE=C′F=2.
(1)求證:BB′⊥底面ABC;
(2)在棱A′B′上是否存在一點(diǎn)M,使得C′M∥平面BEF,若存在,求 值,若不存在,說明理由;
(3)求棱錐A′﹣BEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等差數(shù)列{an}中,已知a1+a2=2,a2+a3=10,求通項(xiàng)公式an及前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某市準(zhǔn)備在道路EF的一側(cè)修建一條運(yùn)動(dòng)比賽道,賽道的前一部分為曲線段FBC,該曲線段是函數(shù) (A>0,ω>0),x∈[﹣4,0]時(shí)的圖象,且圖象的最高點(diǎn)為B(﹣1,2).賽道的中間部分為長 千米的直線跑道CD,且CD∥EF.賽道的后一部分是以O(shè)為圓心的一段圓弧
(1)求ω的值和∠DOE的大;
(2)若要在圓弧賽道所對(duì)應(yīng)的扇形ODE區(qū)域內(nèi)建一個(gè)“矩形草坪”,矩形的一邊在道路EF上,一個(gè)頂點(diǎn)在半徑OD上,另外一個(gè)頂點(diǎn)P在圓弧 上,且∠POE=θ,求當(dāng)“矩形草坪”的面積取最大值時(shí)θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知| |=4,| |=2,且 夾角為120°求:
(1)( ﹣2 )( + );
(2) 上的投影;
(3) + 的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(cosλθ,cos(10﹣λ)θ), =(sin(10﹣λ)θ,sinλθ),λ、θ∈R.
(1)求 + 的值;
(2)若 ,求θ;
(3)若θ= ,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=ax2+(a﹣2)x﹣2(a∈R).
(1)解關(guān)于x的不等式f(x)≥0;
(2)若a>0,當(dāng)﹣1≤x≤1時(shí),f(x)≤0時(shí)恒成立,求a的取值范圍.
(3)若當(dāng)﹣1<a<1時(shí),f(x)>0時(shí)恒成立,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案