已知圓,直線
(1)判斷直線與圓C的位置關(guān)系;
(2)設(shè)與圓C交與不同兩點(diǎn)A、B,求弦AB的中點(diǎn)M的軌跡方程;
(3)若定點(diǎn)P(1,1)分弦AB為,求此時(shí)直線的方程.

(1)由題意可知,圓心C到直線的距離,所以直線與圓相交;(2);(3)

解析試題分析:(1)相交;(2)當(dāng)M與P不重合時(shí),設(shè),則,,從而得到的軌跡方程,當(dāng)M與P重合時(shí),也滿足上式,故弦AB中點(diǎn)的軌跡方程是;(3)若定點(diǎn)P(1,1)分弦AB為,則設(shè),得到一個(gè)關(guān)于的方程,聯(lián)立直線和圓的方程,得到關(guān)于的一個(gè)一元二次方程,根據(jù)兩根之后得到另一個(gè)關(guān)于的方程,兩個(gè)方程聯(lián)立解得,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f8/c/5yy6n.png" style="vertical-align:middle;" />是一元二次方程的一個(gè)根,代入即可求出的值,從而求出直線的方程.
試題解析:
(1)圓的圓心為,半徑為。
∴圓心C到直線的距離
∴直線與圓C相交;
(2)當(dāng)M與P不重合時(shí),連結(jié)CM、CP,則,

設(shè),則,
化簡(jiǎn)得:
當(dāng)M與P重合時(shí),也滿足上式。
故弦AB中點(diǎn)的軌跡方程是
(3)設(shè),由,
,化簡(jiǎn)的………①
又由消去……(*)
   …………②
由①②解得,帶入(*)式解得
∴直線的方程為
考點(diǎn):本題考查了直線與圓的位置關(guān)系的判斷,動(dòng)點(diǎn)的軌跡方程的求法,向量的坐標(biāo)運(yùn)算,體現(xiàn)了方程的思想方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓C的方程為:x2+y2-2mx-2y+4m-4=0.(m∈R).
(1)試求m的值,使圓C的面積最;
(2)求與滿足(1)中條件的圓C相切,且過點(diǎn)(1,-2)的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知平面內(nèi)兩點(diǎn)(-1,1),(1,3).
(Ⅰ)求過兩點(diǎn)的直線方程;
(Ⅱ)求過兩點(diǎn)且圓心在軸上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,已知以點(diǎn) 為圓心的圓與直線 相切,過點(diǎn)的動(dòng)直線 與圓 相交于兩點(diǎn),的中點(diǎn),直線相交于點(diǎn) .

(1)求圓的方程;
(2)當(dāng)時(shí),求直線的方程;
(3)是否為定值?如果是,求出其定值;如果不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓,直線 ,與圓交與兩點(diǎn),點(diǎn).
(1)當(dāng)時(shí),求的值;
(2)當(dāng)時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓C的半徑為2,圓心在軸正半軸上,直線與圓C相切
(1)求圓C的方程;
(2)過點(diǎn)的直線與圓C交于不同的兩點(diǎn)且為時(shí)
求:的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓的圓心在點(diǎn),點(diǎn),求;
(1)過點(diǎn)的圓的切線方程;
(2)點(diǎn)是坐標(biāo)原點(diǎn),連結(jié),求的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為,圓心在上.

(1)若圓心也在直線上,過點(diǎn)作圓的切線,求切線的方程;
(2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

動(dòng)圓M過定點(diǎn)A(-,0),且與定圓A´:(x)2y2=12相切.

(1)求動(dòng)圓圓心M的軌跡C的方程;
(2)過點(diǎn)P(0,2)的直線l與軌跡C交于不同的兩點(diǎn)E、F,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案