已知數(shù)列{an}的前n項和為Sn,a1=1,Sn+1=4an+1,設(shè)bn=an+1-2an.證明:數(shù)列{bn}是等比數(shù)列.
見解析
由于Sn+1=4an+1,① 當(dāng)n≥2時,Sn=4an-1+1.②
①-②,得an+1=4an-4an-1.
所以an+1-2an=2(an-2an-1).
又bn=an+1-2an,所以bn=2bn-1.因為a1=1,且a1+a2=4a1+1,即a2=3a1+1=4.所以b1=a2-2a1=2,故數(shù)列{bn}是首項為2,公比為2的等比數(shù)列.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}的各項均為正數(shù)的等比數(shù)列,且a1a2=2,a3a4=32,
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}的前n項和為Sn=n2,(n∈N*),求數(shù)列{anbn}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)C1、C2、…、Cn、…是坐標(biāo)平面上的一列圓,它們的圓心都在軸的正半軸上,且都與直線y=x相切,對每一個正整數(shù)n,圓Cn都與圓Cn+1相互外切,以rn表示Cn的半徑,已知{rn}為遞增數(shù)列.

(1)證明:{rn}為等比數(shù)列;
(2)設(shè)r1=1,求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

公比為的等比數(shù)列的各項都是正數(shù),且,則(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}的前n項和為Sn,且有a1=2,Sn=2an-2.
(1)求數(shù)列an的通項公式;
(2)若bn=nan,求數(shù)列{bn}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)等比數(shù)列{an}的各項均為正數(shù),公比為q,前n項和為Sn.若對?n∈N*,有S2n<3Sn,則q的取值范圍是(  )
A.(0,1]B.(0,2)C.[1,2)D.(0,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知數(shù)列{an}滿足3an+1+an=0,a2=-,則{an}的前10項和為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

等比數(shù)列{an}中,S3=7,S6=63,則an=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正項等比數(shù)列中,若,則等于(   )
A.-16B.10C.16D.256

查看答案和解析>>

同步練習(xí)冊答案