【題目】設(shè)一組數(shù)據(jù)51,54,m,57,53的平均數(shù)是54,則這組數(shù)據(jù)的標(biāo)準(zhǔn)差等于

【答案】2
【解析】解:數(shù)據(jù)51,54,m,57,53的平均數(shù)是54,

×(51+54+m+57+53)=54,

解得m=55,

所以這組數(shù)據(jù)的方差為

s2= ×[(51﹣54)2+(54﹣54)2+(55﹣54)2+(57﹣54)2+(53﹣54)2]=4,

標(biāo)準(zhǔn)差為s=2.

所以答案是:2.

【考點精析】解答此題的關(guān)鍵在于理解平均數(shù)、中位數(shù)、眾數(shù)的相關(guān)知識,掌握⑴平均數(shù)、眾數(shù)和中位數(shù)都是描述一組數(shù)據(jù)集中趨勢的量;⑵平均數(shù)、眾數(shù)和中位數(shù)都有單位;⑶平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個數(shù)都有關(guān)系,所以最為重要,應(yīng)用最廣;⑷中位數(shù)不受個別偏大或偏小數(shù)據(jù)的影響;⑸眾數(shù)與各組數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個別數(shù)據(jù)的影響,有時是我們最為關(guān)心的數(shù)據(jù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱 中,底面 是邊長為2的等邊三角形, 的中點.

(1)求證: 平面
(2)若四邊形 是正方形,且 , 求直線 與平面 所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足: ,函數(shù)f(x)=ax3+btanx,若f(a4)=9,則f(a1)+f(a2017)的值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)標(biāo)系xoy中,已知曲線 (α為參數(shù),α∈R),在以原點O為極點,x軸非負(fù)半軸為極軸的極坐標(biāo)系中(取相同的長度單位),曲線 = ,曲線C3:ρ=2cosθ. (Ⅰ)求曲線C1與C2的交點M的直角坐標(biāo);
(Ⅱ)設(shè)A,B分別為曲線C2 , C3上的動點,求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,F(xiàn)1、F2是雙曲線 =1(a>0)的左、右焦點,過F1的直線l與雙曲線交于點A、B,若△ABF2為等邊三角形,則△BF1F2的面積為(
A.8
B.8
C.8
D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】和諧高級中學(xué)共有學(xué)生570名,各班級人數(shù)如表:

一班

二班

三班

四班

高一

52

51

y

48

高二

48

x

49

47

高三

44

47

46

43

已知在全校學(xué)生中隨機抽取1名,抽到高二年級學(xué)生的概率是
(1)求x,y的值;
(2)現(xiàn)用分層抽樣的方法在全校抽取114名學(xué)生,應(yīng)分別在各年級抽取多少名?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓 與圓 關(guān)于直線 對稱,且點 在圓 上.
(1)判斷圓 與圓 的公切線的條數(shù);
(2)設(shè) 為圓 上任意一點, , , 三點不共線, 的平分線,且交 ,求證: 的面積之比為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,動點M到點F(1,0)的距離與它到直線x=2的距離之比為 . (Ⅰ)求動點M的軌跡E的方程;
(Ⅱ)設(shè)直線y=kx+m(m≠0)與曲線E交于A,B兩點,與x軸、y軸分別交于C,D兩點(且C,D在A,B之間或同時在A,B之外).問:是否存在定值k,對于滿足條件的任意實數(shù)m,都有△OAC的面積與△OBD的面積相等,若存在,求k的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐P﹣ABCD中,四邊形ABCD為矩形,△PAD為等腰三角形,∠APD=90°,平面PAD⊥平面ABCD,且AB=1,AD=2,E,F(xiàn)分別為PC,BD的中點.
(1)證明:EF∥平面PAD;
(2)證明:直線PA⊥平面PCD.

查看答案和解析>>

同步練習(xí)冊答案