【題目】設(shè)函數(shù)f(x)=lg(x2+ax﹣a﹣1),給出下述命題:
①f(x)有最小值;
②當(dāng)a=0時(shí),f(x)的值域?yàn)镽;
③若f(x)在區(qū)間[2,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是a≥﹣4;
④a=1時(shí),f(x)的定義域?yàn)椋ī?,0);
則其中正確的命題的序號(hào)是

【答案】②
【解析】解:①f(x)有最小值不一定正確,因?yàn)槎x域不是實(shí)數(shù)集時(shí),
函數(shù)f(x)=lg(x2+ax﹣a﹣1)的值域是R,無(wú)最小值,
題目中不能排除這種情況的出現(xiàn),故①不對(duì).
②當(dāng)a=0時(shí),f(x)的值域?yàn)镽是正確的,因?yàn)楫?dāng)a=0時(shí),函數(shù)的定義域不是R,
即內(nèi)層函數(shù)的值域是(0,+∞)故(x)的值域?yàn)镽故②正確.
③若f(x)在區(qū)間[2,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是a≥﹣4.是不正確的,
由f(x)在區(qū)間[2,+∞)上單調(diào)遞增,可得內(nèi)層函數(shù)的對(duì)稱軸﹣ ≤2,可得a≥﹣4,
由對(duì)數(shù)式有意義可得4+2a﹣a﹣1>0,解得a>﹣3,
故由f(x)在區(qū)間[2,+∞)上單調(diào)遞增,應(yīng)得出a>﹣3,故③不對(duì);
④a=1時(shí),f(x)=lg(x2+x﹣2),令x2+x﹣2>0,解得:x>1或x<﹣2,
故函數(shù)的定義域是(﹣∞,﹣2)∪(1,+∞),故④不對(duì);
綜上,②正確,
所以答案是:②.
【考點(diǎn)精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握當(dāng)時(shí),拋物線開(kāi)口向上,函數(shù)在上遞減,在上遞增;當(dāng)時(shí),拋物線開(kāi)口向下,函數(shù)在上遞增,在上遞減才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知p:關(guān)于x的不等式x2+2ax+4>0對(duì)一切 恒成立;q:函數(shù)f(x)=-(5-2a)x在R上是減函數(shù).若“p或q”為真,“p且q”為假,求實(shí)數(shù)a的取值范圍( )。
A.
B.B、
C.C、
D.a≥-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知下列三個(gè)命題:
①若一個(gè)球的半徑縮小到原來(lái)的 ,則其體積縮小到原來(lái)的 ;
②若兩組數(shù)據(jù)的平均數(shù)相等,則它們的標(biāo)準(zhǔn)差也相等;
③直線x+y+1=0與圓x2+y2= 相切.
其中真命題的序號(hào)是( )
A.①②③
B.①②
C.①③
D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a>0且a≠1,函數(shù)y=a2x+2ax﹣1在[﹣1,1]的最大值是14,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知c>0,設(shè)命題p:函數(shù)ycx為減函數(shù).命題q:當(dāng)時(shí),函數(shù)恒成立.如果“pq”為真命題,“pq”為假命題,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=loga ,g(x)=1+loga(x﹣1),(a>0且a≠1),設(shè)f(x)和g(x)的定義域的公共部分為D,
(1)求集合D;
(2)當(dāng)a>1時(shí).若不等式g(x﹣ )﹣f(2x)>2在D內(nèi)恒成立,求a的取值范圍;
(3)是否存在實(shí)數(shù)a,當(dāng)[m,n]D時(shí),f(x)在[m,n]上的值域是[g(n),g(m)],若存在,求實(shí)數(shù)a的取值范圍,若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)將100名髙一新生分成水平相同的甲、乙兩個(gè)平行班”,每班50.陳老師采用A、B兩種不同的教學(xué)方式分別在甲、乙兩個(gè)班級(jí)進(jìn)行教改實(shí)驗(yàn).為了解教學(xué)效果,期末考試后,陳老師對(duì)甲、乙兩個(gè)班級(jí)的學(xué)生成績(jī)進(jìn)行統(tǒng)計(jì)分析,畫(huà)出頻率分布直方圖(如下圖).記成績(jī)不低于90分者為成績(jī)優(yōu)秀

 

0.05

0.01

0.001

 

3.841

6.635

10.828

(I)從乙班隨機(jī)抽取2名學(xué)生的成績(jī),成績(jī)優(yōu)秀的個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望

(II)根據(jù)頻率分布直方圖填寫(xiě)下面2 x2列聯(lián)表,并判斷是否有95%的把握認(rèn)為:“成績(jī)優(yōu)秀與教學(xué)方式有關(guān).

甲班A方式)

乙班(B方式)

總計(jì)

成績(jī)優(yōu)秀

成績(jī)不優(yōu)秀

總計(jì)

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知常數(shù),在矩形ABCD中, , OAB的中點(diǎn),點(diǎn)E、F、G分別在BC、CD、DA上移動(dòng),且,PGEOF的交點(diǎn)(如圖),問(wèn)是否存在兩個(gè)定點(diǎn),使P到這兩點(diǎn)的距離的和為定值?若存在,求出這兩點(diǎn)的坐標(biāo)及此定值;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知y=f(x)+x是偶函數(shù),且f(2)=lg32+log416+6lg +lg ,若g(x)=f(x)+1,則g(﹣2)=

查看答案和解析>>

同步練習(xí)冊(cè)答案