【題目】已知四棱錐P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點.

(Ⅰ)求證:PC∥平面EBD;

(Ⅱ)求證:平面PBC⊥平面PCD.

【答案】(Ⅰ)見解析 (Ⅱ)見解析

【解析】試題分析:1)連,與交于,利用三角形的中位線,可得線線平行,從而可得線面平行;
2)證明,即可證得平面平面

試題解析:(Ⅰ)連接AC交BD與O,連接EO,

∵E、O分別為PA、AC的中點,

∴EO∥PC,

∵PC平面EBD,EO平面EBD

∴PC∥平面EBD

(Ⅱ)∵PD⊥平面ABCD, BC平面ABCD,

∴PD⊥BC,∵ABCD為正方形,∴BC⊥CD,

∵PD∩CD=D, PD、CD平面PCD

∴BC⊥平面PCD,又∵BC平面PBC,

∴平面PBC⊥平面PCD.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時,討論函數(shù)圖像的交點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)|2xa||2x1|(aR).

(1)當(dāng)a=-1時,求f(x)2的解集;

(2)f(x)|2x1|的解集包含集合,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=4cosθ-2sinθ.

(Ⅰ)求C的參數(shù)方程;

(Ⅱ)若點A在圓C上,點B(3,0),求AB中點P到原點O的距離平方的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,且對任意正整數(shù),都有成立.記

求數(shù)列的通項公式;

(Ⅱ)設(shè),數(shù)列的前項和為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x-1|.

(Ⅰ)解不等式f(x)+f(x+4)≥8;

(Ⅱ)若|a|<1,|b|<1,且a≠0,求證:f(ab)>|a|f().

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是函數(shù)在區(qū)間上的圖象,為了得到這個函數(shù)的圖象,只需將y=sinx的圖象

A. 向左平移個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?/span>,縱坐標(biāo)不變

B. 向左平移至個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變

C. 向左平移個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?/span>,縱坐標(biāo)不變

D. 向左平移個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線yx+ln x在點(1,1)處的切線與曲線yax2+(a+2)x+1相切,則a________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)gsinxcosxsin2x,將其圖象向左移個單位,并向上移個單位,得到函數(shù)facos2b的圖象.

(Ⅰ)求實數(shù)a,b 的值;

(Ⅱ)設(shè)函數(shù)φgf,x,求函數(shù)φ的單調(diào)遞增區(qū)間和最值.

查看答案和解析>>

同步練習(xí)冊答案