【題目】已知棱長為l的正方體中,E,F(xiàn),M分別是AB、AD、的中點,又P、Q分別在線段上,且,設(shè)面面MPQ=,則下列結(jié)論中不成立的是( )

A面ABCD

BAC

C面MEF與面MPQ不垂直

D當(dāng)x變化時,不是定直線

【答案】D

【解析】

試題分析:解:連結(jié),交于點交于點

由正方體的性質(zhì)知,

因為的中點,所以

因為,所以

所以,所以平面,平面,

面MPQ=, 平面,所以,而平面,平面,

所以,面ABCD ,所以選項A正確;

,,所以AC,所以選項B正確;

,則

所以,,所以平面,過直線與平面垂直的平面只能有一個,所以面MEF與面MPQ不垂直,所以選項C是正確的;

因為,是定點,過直線外一點有且只有一條直線與已知直線平行,所以直線是唯一的,故選項D不正確

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在坐標(biāo)原點,焦點在軸上的橢圓,離心率為且過點,過定點的動直線與該橢圓相交于、兩點.

(1)若線段中點的橫坐標(biāo)是,求直線的方程;

(2)在軸上是否存在點,使為常數(shù)?若存在,求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們知道,如果集合AS,那么S的子集A的補集為SA={x|xS,且xA}.類似地,對于集合A、B,我們把集合{x|xA,且xB}叫作集合AB的差集,記作AB.據(jù)此回答下列問題:

(1)若A={1,2,3,4},B={3,4,5,6},求AB;

(2)在下列各圖中用陰影表示集合AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|2x-1|+|x-2a|.

(1)當(dāng)a=1時,求f(x)≤3的解集;

(2)當(dāng)x∈[1,2]時,f(x)≤3恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)擬生產(chǎn)一種如圖所示的圓柱形易拉罐(上下底面及側(cè)面的厚度不計).易拉罐的體積為 ,設(shè)圓柱的高度為 ,底面半徑為 ,且.假設(shè)該易拉罐的制造費用僅與其表面積有關(guān).已知易拉罐側(cè)面制造費用為元/ ,易拉罐上下底面的制造費用均為元/ 為常數(shù),且).

(1)寫出易拉罐的制造費用(元)關(guān)于的函數(shù)表達式,并求其定義域;

(2)求易拉罐制造費用最低時的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù)(mZ)為偶函數(shù),且在區(qū)間(0,+∞)上是單調(diào)增函數(shù).

(1)求函數(shù)f(x)的解析式;

(2)設(shè)函數(shù),若g(x)>2對任意的xR恒成立,求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+a2.

(I)若f(x)在x=1處有極值10,求a,b的值;

(II)若當(dāng)a=-1時,f(x)<0在x∈[1,2]恒成立,求b的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a是實數(shù),函數(shù)f(x)= (x-a).

(1)求函數(shù)f(x)的單調(diào)區(qū)間;

(2)設(shè)g(a)為f(x)在區(qū)間[0,2]上的最小值.

①寫出g(a)的表達式;

②求a的取值范圍,使得-6≤g(a)≤-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個盒子中裝有2個紅球,4個白球,除顏色外,它們的形狀、大小、質(zhì)量等完全相同

(1)采用不放回抽樣,先后取兩次,每次隨機取一個球,求恰好取到1個紅球,七個白球的概率;

(2)采用放回抽樣,每次隨機抽取一球,連續(xù)取3次,求至少有1次取到紅球的概率.

查看答案和解析>>

同步練習(xí)冊答案