在四棱錐中,側(cè)面底面,,底面是直角梯形,,,,.
(1)求證:平面;
(2)設(shè)為側(cè)棱上一點(diǎn),,試確定的值,使得二面角為.
(1)平詳見(jiàn)解析;(2).
解析試題分析:平面底面,,所以平面,所以,故可以為原點(diǎn)建立空間直角坐標(biāo)系.根據(jù)題中所給數(shù)據(jù)可得,
(1)由數(shù)量積為0,可得由此得,,由此得平面.(2) 由于平面,所以平面的法向量為.由,,可得,所以.又.設(shè)平面的法向量為,
由,得,取得.由于二面角為,所以,解此方程可得的值.
試題解析:(1)平面底面,,所以平面,
所以,以為原點(diǎn)建立空間直角坐標(biāo)系.
則
,,所以,,
又由平面,可得,所以平面
(2)平面的法向量為
,,所以,
設(shè)平面的法向量為,,,
由,,得 所以,,所以,
所以,注意到,得
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱錐中,直線(xiàn)平面,且
,又點(diǎn),,分別是線(xiàn)段,,的中點(diǎn),且點(diǎn)是線(xiàn)段上的動(dòng)點(diǎn).
(1)證明:直線(xiàn)平面;
(2)若,求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在邊長(zhǎng)為1的等邊三角形ABC中,D,E分別是AB,AC邊上的點(diǎn),AD=AE,F是BC的中點(diǎn),AF與DE交于點(diǎn)G,將沿AF折起,得到如圖所示的三棱錐,其中.
(1) 證明://平面;
(2) 證明:平面;
(3)當(dāng)時(shí),求三棱錐的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,三棱錐中,,,,點(diǎn)在平面內(nèi)的射影恰為的重心,M為側(cè)棱上一動(dòng)點(diǎn).
(1)求證:平面平面;
(2)當(dāng)M為的中點(diǎn)時(shí),求直線(xiàn)與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知空間三點(diǎn)A(-2,0,2),B(-1,1,2),C(-3,0,4).設(shè)a=,b=.
(1)求a和b的夾角θ;
(2)若向量ka+b與ka-2b互相垂直,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,三棱柱ABC-A1B1C1的所有棱長(zhǎng)都是2,又AA1⊥平面ABC,D,E分別是AC,CC1的中點(diǎn).
(1)求證:AE⊥平面A1BD.
(2)求二面角D-BA1-A的余弦值.
(3)求點(diǎn)B1到平面A1BD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,AB=AA1=.
(1)證明:A1C⊥平面BB1D1D;
(2)求平面OCB1與平面BB1D1D的夾角θ的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com