【題目】二次函數(shù)f(x)=ax2+bx+c(a,b∈R,a≠0)滿足條件:
①當(dāng)x∈R時(shí),f(x)的圖象關(guān)于直線x=﹣1對(duì)稱;②f(1)=1;③f(x)在R上的最小值為0;
(1)求函數(shù)f(x)的解析式;
(2)求最大的m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.

【答案】
(1)解:∵f(x)的對(duì)稱軸為x=﹣1,

=﹣1,即b=2a

又f(1)=1,即a+b+c=1

由條件③知:a>0,且 ,即b2=4ac

由上可求得


(2)解:由(1)知: ,圖象開口向上.

而y=f(x+t)的圖象是由y=f(x)平移t個(gè)單位得到,要x∈[1,m]時(shí),f(x+t)≤x

即y=f(x+t)的圖象在y=x的圖象的下方,且m最大.

∴1,m應(yīng)該是y=f(x+t)與y=x的交點(diǎn)橫坐標(biāo),

即1,m是 的兩根,

由1是 的一個(gè)根,得(t+2)2=4,解得t=0,或t=﹣4

把t=0代入原方程得x1=x2=1(這與m>1矛盾)

把t=﹣4代入原方程得x2﹣10x+9=0,解得x1=1,x2=9∴

m=9

綜上知:m的最大值為9


【解析】(1)利用條件①②③,可確定解析式中的參數(shù),從而可得函數(shù)f(x)的解析式;(2)y=f(x+t)的圖象是由y=f(x)平移t個(gè)單位得到,要x∈[1,m]時(shí),f(x+t)≤x即y=f(x+t)的圖象在y=x的圖象的下方,且m最大.
【考點(diǎn)精析】本題主要考查了二次函數(shù)的性質(zhì)和二次函數(shù)在閉區(qū)間上的最值的相關(guān)知識(shí)點(diǎn),需要掌握當(dāng)時(shí),拋物線開口向上,函數(shù)在上遞減,在上遞增;當(dāng)時(shí),拋物線開口向下,函數(shù)在上遞增,在上遞減;當(dāng)時(shí),當(dāng)時(shí),;當(dāng)時(shí)在上遞減,當(dāng)時(shí),才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點(diǎn),點(diǎn)是橢圓上在第一象限的點(diǎn),直線軸于點(diǎn),直線軸于點(diǎn).

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程和離心率;

(Ⅱ)是否存在點(diǎn),使得直線 與直線平行?若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線 t為參數(shù)), 為參數(shù)).
(1)化 的方程為普通方程;
(2)若 上的點(diǎn)對(duì)應(yīng)的參數(shù)為 ,Q為 上的動(dòng)點(diǎn),求PQ中點(diǎn)M到直線(t為參數(shù))距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)y=x3與y=( x2的圖象的交點(diǎn)為(x0 , y0),則x0所在的區(qū)間是(
A.(0,1)
B.(1,2)
C.(2,3)
D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某烹飪學(xué)院為了弘揚(yáng)中國(guó)傳統(tǒng)的飲食文化,舉辦了一場(chǎng)由在校學(xué)生參加的廚藝大賽,組委會(huì)為了了解本次大賽參賽學(xué)生的成績(jī)情況,從參賽學(xué)生中抽取了n名學(xué)生的成績(jī)(滿分100分)作為樣本,將所得數(shù)經(jīng)過分析整理后畫出了評(píng)論分布直方圖和莖葉圖,其中莖葉圖受到污染,請(qǐng)據(jù)此解答下列問題:

(1)求頻率分布直方圖中a,b的值;

(2)規(guī)定大賽成績(jī)?cè)赱80,90)的學(xué)生為廚霸,在[90,100]的學(xué)生為廚神,現(xiàn)從被稱為廚霸、廚神的學(xué)生中隨機(jī)抽取2人取參加校際之間舉辦的廚藝大賽,求所取2人總至少有1人是廚神的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線 為參數(shù)),
(1)當(dāng) 時(shí),求 的交點(diǎn)坐標(biāo);
(2)以坐標(biāo)原點(diǎn) 為圓心的圓與 相切,切點(diǎn)為 , 的中點(diǎn),當(dāng) 變化時(shí),求 點(diǎn)的軌跡的參數(shù)方程,并指出它是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,拋物線的方程為

(1)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,求的極坐標(biāo)方程;

(2)直線的參數(shù)方程是為參數(shù)),交于兩點(diǎn), ,求的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓x2+y2﹣2x﹣3=0的圓心坐標(biāo)及半徑分別為(
A.(﹣1,0)與
B.(1,0)與
C.(1,0)與2
D.(﹣1,0)與2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)是偶函數(shù),并且在(0,+∞)上為增函數(shù)的為(
A.
B.
C.
D.y=﹣2x2+3

查看答案和解析>>

同步練習(xí)冊(cè)答案