設(shè)AB是過橢圓右焦點(diǎn)的弦,那么以AB為直徑的圓必與橢圓的右準(zhǔn)線(    )

A.相切             B.相離              C.相交               D.相交或相切

B

解析:設(shè)點(diǎn)A、B及線段AB中點(diǎn)M到右準(zhǔn)線的距離分別為d1、d2、d,

則有==e.

=e.

<d.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)設(shè)橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的一個頂點(diǎn)為(0,
3
),F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點(diǎn),離心率e=
1
2
,過橢圓右焦點(diǎn)的直線l與橢圓C交于M、N兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在直線l,使得以線段MN為直徑的圓過原點(diǎn),若存在,求出直線l的方程;若不存在,說明理由.
(Ⅲ)若AB是橢圓C經(jīng)過原點(diǎn)O的弦,MN∥AB,求證:
|AB|2
|MN|
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,以橢圓
x2
a2
+
y2
b2
=1 (a>b>0)
的中心O為圓心,分別以a和b為半徑作大圓和小圓.過橢圓右焦點(diǎn)F(c,0)(c>b)作垂直于x軸的直線交大圓于第一象限內(nèi)的點(diǎn)A.連接OA交小圓于點(diǎn)B.設(shè)直線BF是小圓的切線.
(1)求證c2=ab,并求直線BF與y軸的交點(diǎn)M的坐標(biāo);
(2)設(shè)直線BF交橢圓于P、Q兩點(diǎn),求證
OP
OQ
=
1
2
b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的一個頂點(diǎn)與拋物線C:x2=4
3
y
的焦點(diǎn)重合,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點(diǎn),且離心率e=
1
2
且過橢圓右焦點(diǎn)F2的直線l與橢圓C交于M、N兩點(diǎn).
(1)求橢圓C的方程;
(2)是否存在直線l,使得
OM
ON
=-2
.若存在,求出直線l的方程;若不存在,說明理由.
(3)若AB是橢圓C經(jīng)過原點(diǎn)O的弦,MN∥AB,求證:
|AB|2
|MN|
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的一個頂點(diǎn)為(0,
3
),F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點(diǎn),離心率e=
1
2
,過橢圓右焦點(diǎn)F2的直線l與橢圓C交于M,N兩點(diǎn).
(1)求橢圓C的方程;
(2)若AB是橢圓C經(jīng)過原點(diǎn)O的弦,MN∥AB,求證:
|AB|2
|MN|
為定值.

查看答案和解析>>

同步練習(xí)冊答案