是否存在a、b、c使得等式1•22+2•32+…+n(n+1)2=
n(n+1)12
(an2+bn+c).
分析:首先假設(shè)存在a、b、c使題設(shè)的等式成立,令n=1,2,3,可求得a、b、c的值,令Sn=1•22+2•32+…+n(n+1)2
用數(shù)學歸納法予以證明即可.
解答:解:假設(shè)存在a、b、c使題設(shè)的等式成立,
這時令n=1,2,3,有
4=
1
6
(a+b+c)
22=
1
2
(4a+2b+c)
70=9a+3b+c
解得:
a=3
b=11
c=10

于是,對n=1,2,3下面等式成立
1•22+2•32+…+n(n+1)2=
n(n+1)
12
(3n2+11n+10)

記Sn=1•22+2•32+…+n(n+1)2
證明:①由前面可知,當n=1時,等式成立,
②設(shè)n=k時上式成立,即Sk=
k(k+1)
12
(3k2+11k+10)
那么Sk+1=Sk+(k+1)(k+2)2=
k(k+1)
12
(k+2)(3k+5)+(k+1)(k+2)2
=
(k+1)(k+2)
12
(3k2+5k+12k+24)
=
(k+1)(k+2)
12
[3(k+1)2+11(k+1)+10]
也就是說,等式對n=k+1也成立.
綜上所述,當a=3,b=11,c=10時,題設(shè)對一切自然數(shù)n均成立.
點評:本題考查數(shù)學歸納法,首先要求得a、b、c的值,考查方程思想,其次再用數(shù)學歸納法證明,證明時的難點在n=k+1,注意項數(shù)的變化與理解,屬于難題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c.
(1)若f(-1)=0,試判斷函數(shù)f(x)零點個數(shù);
(2)若對?x1,x2∈R,且x1<x2,f(x1)≠f(x2),試證明?x0∈(x1,x2),使f(x0)=
1
2
[f(x1)+f(x2)]
成立.
(3)是否存在a,b,c∈R,使f(x)同時滿足以下條件①對?x∈R,f(x-4)=f(2-x),且f(x)≥0;②對?x∈R,都有0≤f(x)-x≤
1
2
(x-1)2
.若存在,求出a,b,c的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c.
(1)若f(-1)=0,試判斷函數(shù)f(x)零點個數(shù);
(2)是否存在a,b,c∈R,使f(x)同時滿足以下條件:①對任意x∈R,f(x-4)=f(2-x),且f(x)≥0;②對任意x∈R,都有0≤f(x)-x≤
12
(x-1)2
,若存在,求出a,b,c的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c.
(1)若f(-1)=0,試判斷函數(shù)f(x)零點個數(shù);
(2)若對x1x2∈R,且x1<x2,f(x1)≠f(x2),證明方程f(x)=
1
2
[f(x1)+f(x2)]
必有一個實數(shù)根屬于(x1,x2).
(3)是否存在a,b,c∈R,使f(x)同時滿足以下條件
①當x=-1時,函數(shù)f(x)有最小值0;
②對任意x∈R,都有0≤f(x)-x≤
(x-1)2
2
若存在,求出a,b,c的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c
(1)若f(-1)=0,試判斷函數(shù)f(x)零點個數(shù);
(2)若對任意的x1,x2∈R,且x1<x2,f(x1)≠f(x2)(a>0),試證明:
1
2
[f(x1)+f(x2)]>f(
x1+x2
2
)成立.
(3)是否存在a,b,c∈R,使f(x)同時滿足以下條件:
①對任意x∈R,f(x-4)=f(2-x),且f(x)≥0;
②對任意的x∈R,都有0≤f(x)-x≤
1
2
(x-1)2
?若存在,求出a,b,c的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c.
(1)若f(-1)=0,試判斷函數(shù)f(x)零點的個數(shù);
(2)是否存在a,b,c∈R,使f(x)同時滿足以下條件:
①對任意x∈R,f(-1+x)=f(-1-x),且f(x)≥0;
②對任意x∈R,都有0≤f(x)-x≤
1
2
(x-1)2.若存在,求出a,b,c的值;若不存在,請說明理由.
(3)若對任意x1、x2∈R且x1<x2,f(x1)≠f(x2),試證明:存在x0∈(x1,x2),使f(x0)=
1
2
[f(x1)+f(x2)]成立.

查看答案和解析>>

同步練習冊答案