分析 (1)連結BD,由EF∥BD,B1D1∥BD,得EF∥B1D1,由此能證明EF∥平面CB1D1.
(2)設A1C1∩B1D1=O,連結CO,由已知推導出∠B1CO是CB1與平面CAA1C1所成角,由此能求出CB1與平面CAA1C1所成角的大。
解答 證明:(1)連結BD,
∵在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為棱AD,AB的中點,
∴EF∥BD,B1D1∥BD,∴EF∥B1D1,
∵EF?平面CB1D1,B1D1?平面CB1D1,
∴EF∥平面CB1D1.
解:(2)設A1C1∩B1D1=O,連結CO,
∵正方體ABCD-A1B1C1D1中,A1B1C1D1是正方形,
∴A1C1⊥B1D1,AA1⊥B1D1,
∵A1C1∩AA1=A1,∴B1O⊥平面CAA1C1,
∴∠B1CO是CB1與平面CAA1C1所成角,
∵OB1=$\frac{1}{2}$CB1,
∴sin∠B1CO=OB1:CB1=$\frac{1}{2}$,
∴CB1與平面CAA1C1所成角的正弦值為$\frac{1}{2}$.
點評 本題考查線面平行的證明,考查直線與平面所成角的大小的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $2\sqrt{3}$ | C. | 4 | D. | $4\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
ξ | -1 | 0 | 1 |
P | $\frac{1}{2}$ | $\frac{1}{8}$ | $\frac{3}{8}$ |
A. | $\frac{7}{2}$ | B. | $\frac{5}{2}$ | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com