精英家教網 > 高中數學 > 題目詳情
(2008•上海模擬)已知a、b、c是△ABC中∠A、∠B、∠C的對邊,若a=7,c=5,∠A=120°,求邊長b及△ABC外接圓半徑R.
分析:由A的度數求出sinA和cosA的值,由cosA的值,以及a與c的值,利用余弦定理求出b的值,然后由sinA和a的值,利用正弦定理即可求出三角形外接圓的半徑R的值.
解答:解:∵a=7,c=5,∠A=120°,
由余弦定理:a2=b2+c2-2bccosA
⇒72=b2+52-2×5×bcos120°
⇒b2+5b-24=0⇒b=3,(6分)
由正弦定理:
a
sinA
=2R⇒
7
sin120°
=2R⇒R=
7
3
3
,
b=3,R=
7
3
3
.(6分)
點評:此題屬于解三角形的題型,涉及的知識有正弦定理,余弦定理,以及特殊角的三角函數值,熟練掌握定理是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2008•上海模擬)以拋物線y2=8
3
x
的焦點F為右焦點,且兩條漸近線是
3
y=0
的雙曲線方程為
x2
9
-
y2
3
=1
x2
9
-
y2
3
=1

查看答案和解析>>

科目:高中數學 來源: 題型:

(2008•上海模擬)已知AB是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的長軸,若把該長軸n等分,過每個等分點作AB的垂線,依次交橢圓的上半部分于點P1,P2,…,Pn-1,設左焦點為F1,則
lim
n→∞
1
n
(|F1A|+|F1P1|+…+|F1Pn-1|+|F1B|)
=
a
a

查看答案和解析>>

科目:高中數學 來源: 題型:

(2008•上海模擬)已知向量
m
n
,其中
m
=(
1
x3+c-1
,-1)
n
=(-1,y)
(x,y,c∈R),把其中x,y所滿足的關系式記為y=f(x),若函數f(x)為奇函數.
(Ⅰ) 求函數f(x)的表達式;
(Ⅱ) 已知數列{an}的各項都是正數,Sn為數列{an}的前n項和,且對于任意n∈N*,都有“{f(an)}的前n項和等于Sn2,”求數列{an}的通項式;
(Ⅲ) 若數列{bn}滿足bn=4n-a•2an+1(a∈R),求數列{bn}的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2008•上海模擬)集合A={x||x|<2}的一個非空真子集是
[0,1]
[0,1]

查看答案和解析>>

科目:高中數學 來源: 題型:

(2008•上海模擬)一機器貓每秒鐘前進或后退一步,程序設計師讓機器貓以前進3步,然后再后退2步的規(guī)律移動.如果將此機器貓放在數軸的原點,面向正方向,以1步的距離為1單位長移動.令P(n)表示第n秒時機器貓所在位置的坐標,且P(0)=0,則下列結論中錯誤的是(  )

查看答案和解析>>

同步練習冊答案