已知函數(shù)是二次函數(shù),不等式的解集為,且在區(qū)間上的最小值是4.
(Ⅰ)求的解析式;
(Ⅱ)設(shè),若對(duì)任意的,均成立,求實(shí)數(shù)的取值范圍.

(Ⅰ);(Ⅱ)  

解析試題分析:(Ⅰ)解集為,設(shè),且
對(duì)稱軸,開(kāi)口向下,,解得,
;  5分
(Ⅱ),恒成立
對(duì)恒成立
化簡(jiǎn)
對(duì)恒成立  8分
,記,則,
二次函數(shù)開(kāi)口向下,對(duì)稱軸為,當(dāng)時(shí),
      10分
,解得                    12分
考點(diǎn):本題考查了一元二次函數(shù)解析式及值域的求解
點(diǎn)評(píng):

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

提高過(guò)江大橋的車輛通行能力可改善整個(gè)城市的交通狀況.在一般情況下,大橋上的車流速度(單位:千米/小時(shí))是車流密度(單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0千米/小時(shí);當(dāng)車流密度不超過(guò)20輛/千米時(shí),車流速度為60千米/小時(shí).研究表明:當(dāng)時(shí),車流速度是車流密度的一次函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(Ⅱ)當(dāng)車流密度為多大時(shí),車流量(單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車輛數(shù),單位:輛/小時(shí))可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)命題:函數(shù)上為減函數(shù), 命題的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/02/8/mmra82.png" style="vertical-align:middle;" />,命題函數(shù)定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/02/8/mmra82.png" style="vertical-align:middle;" />
(1)若命題為真命題,求的取值范圍。
(2)若為真命題,為假命題,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)證明:當(dāng)f(x1)=f(x2)(x1≠x2)時(shí),x1+x2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

甲廠以x 千克/小時(shí)的速度運(yùn)輸生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求),每小時(shí)可獲得利潤(rùn)是元.
(1)要使生產(chǎn)該產(chǎn)品2小時(shí)獲得的利潤(rùn)不低于3000元,求x的取值范圍;
(2)要使生產(chǎn)900千克該產(chǎn)品獲得的利潤(rùn)最大,問(wèn):甲廠應(yīng)該選取何種生產(chǎn)速度?并求最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(1)若,求的范圍;   (2)不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)已知函數(shù)y=ln(-x2+x-a)的定義域?yàn)椋ǎ?,3),求實(shí)數(shù)a的取值范圍;
(2)已知函數(shù)y=ln(-x2+x-a)在(-2,3)上有意義,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),g(x)=,a,b∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)記函數(shù)h(x)=f(x)+g(x),當(dāng)a=0時(shí),h(x)在(0,1)上有且只有一個(gè)極值點(diǎn),求實(shí)數(shù)b的取值范圍;
(3)記函數(shù)F(x)=|f(x)|,證明:存在一條過(guò)原點(diǎn)的直線l與y=F(x)的圖象有兩個(gè)切點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)證明函數(shù)的圖像關(guān)于點(diǎn)對(duì)稱;
(2)若,求
(3)在(2)的條件下,若 ,為數(shù)列的前項(xiàng)和,若對(duì)一切都成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案