已知各項(xiàng)均不相等的等差數(shù)列{an}的前n項(xiàng)和為Sn,若S3=15,且a3+1為a1+1和a7+1的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式與前n項(xiàng)和Sn;
(2)設(shè)Tn為數(shù)列{}的前n項(xiàng)和,問(wèn)是否存在常數(shù)m,使Tn=m[+],若存在,求m的值;若不存在,說(shuō)明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列的公差大于0,且是方程的兩根,數(shù)列的前項(xiàng)的和為,且.
(1) 求數(shù)列,的通項(xiàng)公式; (2) 記,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列的前項(xiàng)和為,,,
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前100項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列滿足(為常數(shù),)
(1)當(dāng)時(shí),求;
(2)當(dāng)時(shí),求的值;
(3)問(wèn):使恒成立的常數(shù)是否存在?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)等差數(shù)列的前項(xiàng)和為且.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和,并求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列{}中,,前項(xiàng)和.
(1)求通項(xiàng);
(2)若從數(shù)列{}中依次取第項(xiàng)、第項(xiàng)、第項(xiàng)…第項(xiàng)……按原來(lái)的順序組成一個(gè)新的數(shù)列{},求數(shù)列{}的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知正項(xiàng)數(shù)列中,其前項(xiàng)和為,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),,求證:;
(3)設(shè)為實(shí)數(shù),對(duì)任意滿足成等差數(shù)列的三個(gè)不等正整數(shù) ,不等式都成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列的前項(xiàng)和為,且是和的等差中項(xiàng),等差數(shù)列滿足,.
(1)求數(shù)列、的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com