【題目】數(shù)列滿足: ,且 ,其前n項和.

(1)求證:為等比數(shù)列;

(2)記為數(shù)列的前n項和.

(i)當時,求;

(ii)當時,是否存在正整數(shù),使得對于任意正整數(shù),都有?如果存在,求出的值;如果不存在,請說明理由.

【答案】(1)見解析(2)(i),(ii

【解析】

(1)利用當時,,進行運算,最后能證明出為等比數(shù)列;

(2)(i)利用錯位相減法,可以求出;

(ii)根據(jù)的奇偶性進行分類,利用差比判斷數(shù)列的單調(diào)性,最后可以求出的值.

(1)當時,, 整理得

所以是公比為a的等比數(shù)列,又所以

(2)因為

(i)當

兩式相減,整理得 .

(ii)因為, ∴當為偶數(shù)時,

為奇數(shù)時,,∴如果存在滿足條件的正整數(shù),則一定是偶數(shù).∵.

∴當時, ,∴ 又。

∴當時,,當時,

,即存在正整數(shù),使得對于任意正整數(shù)都有.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知下列兩個命題: 函數(shù)在[2,+∞)單調(diào)遞增; 關于的不等式的解集為.若為真命題, 為假命題,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F1 , F2是橢圓 的左、右焦點,點P在橢圓C上,線段PF2與圓x2+y2=b2相切于點Q,且點Q為線段PF2的中點,則 (其中e為橢圓C的離心率)的最小值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某汽車公司對最近6個月內(nèi)的市場占有率進行了統(tǒng)計,結果如表;

月份代碼

1

2

3

4

5

6

市場占有率

11

13

16

15

20

21

(1)可用線性回歸模型擬合之間的關系嗎?如果能,請求出關于的線性回歸方程,如果不能,請說明理由;

(2)公司決定再采購兩款車擴大市場, 兩款車各100輛的資料如表:

車型

報廢年限(年)

合計

成本

1

2

3

4

10

30

40

20

100

1000元/輛

15

40

35

10

100

800元/輛

平均每輛車每年可為公司帶來收入元,不考慮采購成本之外的其他成本,假設每輛車的使用壽命部是整數(shù)年,用每輛車使用壽命的頻率作為概率,以每輛車產(chǎn)生利潤的平均數(shù)作為決策依據(jù),應選擇采購哪款車型?

參考數(shù)據(jù): ,,.

參考公式:相關系數(shù);

回歸直線方程為,其中,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣a|+|2x﹣1|,a∈R.
(I)當a=3時,求關于x的不等式f(x)≤6的解集;
(II)當x∈R時,f(x)≥a2﹣a﹣13,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知圓軸的左右交點分別為,與軸正半軸的交點為.

(1)若直線過點并且與圓相切,求直線的方程;

(2)若點是圓上第一象限內(nèi)的點,直線分別與軸交于點,點是線段的中點,直線,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高三特長班的一次月考數(shù)學成績的莖葉圖和頻率分布直方圖1都受到不同程度的損壞,但可見部分如圖2,據(jù)此解答如下問題:
(Ⅰ)求分數(shù)在[70,80)之間的頻數(shù),并計算頻率分布直方圖中[70,80)間的矩形的高;
(Ⅱ)若要從分數(shù)在[50,70)之間的試卷中任取兩份分析學生失分情況,在抽取的試卷中,求至少有一份在[50,60)之間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,圓形紙片的圓心為O,半徑為5cm,該紙片上的等邊三角形ABC的中心為O.D、E、F為圓O上的點,△DBC,△ECA,△FAB分別是以BC,CA,AB為底邊的等腰三角形.沿虛線剪開后,分別以BC,CA,AB為折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱錐.當△ABC的邊長變化時,所得三棱錐體積(單位:cm3)的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)請作出該函數(shù)在長度為一個周期的閉區(qū)間的大致圖象;

(2)試判斷該函數(shù)的奇偶性,并運用函數(shù)的奇偶性定義說明理由;

(3)求該函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習冊答案