【題目】已知函數(shù)(,).
(1)當(dāng)時,若函數(shù)在上有兩個零點,求的取值范圍;
(2)當(dāng)時,是否存在,使得不等式恒成立?若存在,求出的取值集合;若不存在,請說明理由.
【答案】(1).(2)存在,的取值集合為.
【解析】
(1)將代入,求得函數(shù)的導(dǎo)數(shù),當(dāng)時顯然不成立,當(dāng)時,利用零點的存在定理,即可求解的結(jié)論;
(2)當(dāng)時,設(shè),由,進(jìn)而條件轉(zhuǎn)化為不等式對恒成立,得到是函數(shù)的最大值,也是函數(shù)的極大值,故,當(dāng)時,利用導(dǎo)數(shù)得到不等式恒成立,即可求解.
(1)當(dāng)時,,(),
當(dāng)時,,在上單調(diào)遞增,不合題意,舍去;
當(dāng)時,,,
進(jìn)而在上單調(diào)遞增,在上單調(diào)遞減,
依題意有,,,解得,
又,且,在上單調(diào)遞增,
進(jìn)而由零點存在定理可知,函數(shù)在上存在唯一零點;
下面先證()恒成立,令,則,
當(dāng)時,,函數(shù)單調(diào)遞減,
當(dāng)時,,函數(shù)單調(diào)遞增,
進(jìn)而,∴,∴,
可得,
若,得,
因為,則,即當(dāng)時,取,有,
即存在使得,
進(jìn)而由零點存在定理可知在上存在唯一零點;
(2)當(dāng)時,存在,使得不等式恒成立.
證明如下:
當(dāng)時,設(shè),則,
依題意,函數(shù)恒成立,
又由,進(jìn)而條件轉(zhuǎn)化為不等式對恒成立,
所以是函數(shù)的最大值,也是函數(shù)的極大值,故,解得.
當(dāng)時,(),
令可得,令可得.
故在上遞增,在上遞減.
因此,即不等式恒成立.
綜上,存在且的取值集合為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】元朝著名的數(shù)學(xué)家朱世杰在《四元玉鑒》中有一首詩:“我有一壺酒,攜著游春走.遇店添一倍,逢友飲一斗.”基于此情景,設(shè)計了如圖所示的程序框圖,若輸入的,輸出的,則判斷框中可以填( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左頂點為,左、右焦點分別為,離心率為,是橢圓上的一個動點(不與左、右頂點重合),且的周長為6,點關(guān)于原點的對稱點為,直線交于點.
(1)求橢圓方程;
(2)若直線與橢圓交于另一點,且,求點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+1|﹣|2x﹣2|的最大值為M,正實數(shù)a,b滿足a+b=M.
(1)求2a2+b2的最小值;
(2)求證:aabb≥ab.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐中,與均為等腰直角三角形,且,,為上一點,且平面.
(1)求證:;
(2)過作一平面分別交, , 于,,,若四邊形為平行四邊形,求多面體的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果存在常數(shù)k使得無窮數(shù)列滿足恒成立,則稱為數(shù)列.
(1)若數(shù)列是數(shù)列,,,求;
(2)若等差數(shù)列是數(shù)列,求數(shù)列的通項公式;
(3)是否存在數(shù)列,使得,,,…是等比數(shù)列?若存在,請求出所有滿足條件的數(shù)列;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高中某班共有40個學(xué)生,將學(xué)生的身高分成4組:平頻率/組距,,,進(jìn)行統(tǒng)計,作成如圖所示的頻率分布直方圖.
(1)求頻率分布直方圖中的值和身高在內(nèi)的人數(shù);
(2)求這40個學(xué)生平均身高的估計值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表)(精確到0.01).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在處的切線方程,求實數(shù)a,b的值;
(2)若函數(shù)在和兩處得極值,求實數(shù)a的取值范圍;
(3)在(2)的條件下,若.求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)sin(ωx+φ)﹣cos(ωx+φ)(0<φ<π,ω>0)為偶函數(shù),且y=f(x)圖象的兩相鄰對稱軸間的距離為,則f()的值為( )
A.﹣1B.1C..D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com