6.從學(xué)號為1至50的高一某班50名學(xué)生中隨機(jī)選取5名同學(xué)參加數(shù)學(xué)測試,采用系統(tǒng)抽樣的方法,則所選5名學(xué)生的學(xué)號可能是(  )
A.1,2,3,4,5B.4,14,24,34,44C.2,4,6,8,10D.4,13,22,31,40

分析 采用系統(tǒng)抽樣的方法時,即將總體分成均衡的若干部分,分段的間隔要求相等,間隔一般為總體的個數(shù)除以樣本容量,據(jù)此即可得出答案.

解答 解:∵從學(xué)號為0~50的高一某班50名學(xué)生中隨機(jī)選取5名同學(xué)參加數(shù)學(xué)測試,
采用系統(tǒng)抽樣間隔應(yīng)為$\frac{50}{5}$=10,
只有B答案中的編號間隔為10,
故選:B.

點(diǎn)評 本題主要考查系統(tǒng)抽樣的定義,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.函數(shù)$f(x)=Asin({ωx+φ})({A>0,ω>0,|φ|<\frac{π}{2}})$的圖象(部分)如圖.
(1)求f(x)解析式
(2)若$α∈({0,\frac{π}{3}}),且f({\frac{α}{π}})=\frac{4}{3}$,求cosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知定義在R上的函數(shù)y=f(x)滿足:函數(shù)y=f(x-1)的圖象關(guān)于直線x=1對稱,且當(dāng)x∈(-∞,0),f(x)+xf′(x)<0成立(f′(x)是函數(shù)f(x)的導(dǎo)函數(shù)),若a=(sin$\frac{1}{2}$)f(sin$\frac{1}{2}$),b=(ln2)f(ln2),c=2f(log${\;}_{\frac{1}{2}}$$\frac{1}{4}$),則a,b,c的大小關(guān)系是( 。
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.試用集合A,B的交集、并集、補(bǔ)集表示圖中陰影部分所表示的集合( 。
A.UBB.A∩(∁UB)C.A∪(∁UB)D.U(A∩B)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知軸截面為正方形 EFGH 的圓柱的體積為2π,則從點(diǎn)E沿圓柱的側(cè)面到相對頂點(diǎn) G的最短距離是$\sqrt{{π}^{2}+4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知全集U=R,集合A={x|1≤x<4},B={x|3x-1<x+5},求:
(1)A∩B;      
(2)∁UA∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在矩形ABCD中,點(diǎn)E為CD的中點(diǎn),$\overrightarrow{AB}$=a,$\overrightarrow{AD}$=$\overrightarrow b$,則$\overrightarrow{BE}$=( 。
A.$-\frac{1}{2}\overrightarrow a-\overrightarrow b$B.$\frac{1}{2}\overrightarrow a-\overrightarrow b$C.$-\frac{1}{2}\overrightarrow a+\overrightarrow b$D.$\frac{1}{2}\overrightarrow a+\overrightarrow b$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),左右焦點(diǎn)分別為F1,F(xiàn)2,C的離心率e=$\frac{{\sqrt{3}}}{2}$,且過P($\sqrt{3},\frac{1}{2}$)點(diǎn)
(1)求橢圓C的方程;
(2)若Q點(diǎn)在橢圓C上,且$∠Q{F_1}F_2^{\;}$=30°,求△QF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若4x+4-x=$\frac{10}{3}$,則xlog34=±1.

查看答案和解析>>

同步練習(xí)冊答案