【題目】已知等比數(shù)列{an}的公比q=2,前3項和是7,等差數(shù)列{bn}滿足b1=3,2b2=a2+a4 . (Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)求數(shù)列 的前n項和Sn

【答案】解:(Ⅰ)∵等比數(shù)列{an}的公比q=2,前3項和是7,

∴a1+2a1+4a1=7,

∴a1=1,

∴an=2n﹣1,

設等差數(shù)列{bn}的公差為d,

∵b1=3,2b2=a2+a4=2+8,

∴b2=5,

∴d=5﹣3=2,

∴bn=3+2(n﹣1)=2n+1;

(Ⅱ) = = ,

∴數(shù)列 的前n項和Sn=1﹣ + +…+ =1﹣ =


【解析】(Ⅰ)根據(jù)等差數(shù)列和等比數(shù)列的定義以及等比數(shù)列的求和公式即可求出通項公式,(Ⅱ) = = ,裂項求和即可.
【考點精析】通過靈活運用數(shù)列的前n項和,掌握數(shù)列{an}的前n項和sn與通項an的關系即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的離心率是 ,且過點 .直線y= x+m與橢圓C相交于A,B兩點. (Ⅰ)求橢圓C的方程;
(Ⅱ)求△PAB的面積的最大值;
(Ⅲ)設直線PA,PB分別與y軸交于點M,N.判斷|PM|,|PN|的大小關系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于實數(shù)a,b,c,下列命題正確的是( )
A.若a>b,則ac2>bc2
B.若a<b<0,則a2>ab>b2
C.若a<b<0,則
D.若a<b<0,則

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(x2﹣ax+a)e﹣x , a∈R.
(1)求函數(shù)f(x)的單調區(qū)間;
(2)設g(x)=f'(x),其中f'(x)為函數(shù)f(x)的導函數(shù).判斷g(x)在定義域內是否為單調函數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=eax﹣x. (Ⅰ)若曲線y=f(x)在(0,f(0))處的切線l與直線x+2y+3=0垂直,求a的值;
(Ⅱ)當a≠1時,求證:存在實數(shù)x0使f(x0)<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) (a>0). (Ⅰ)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若 恒成立,求a的取值范圍;
(Ⅲ)證明:總存在x0 , 使得當x∈(x0 , +∞),恒有f(x)<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的各項均為非零實數(shù),且對于任意的正整數(shù)n,都有(a1+a2+a3+…+an2=a13+a23+a33+…+an3
(1)寫出數(shù)列{an}的前三項a1 , a2 , a3(請寫出所有可能的結果);
(2)是否存在滿足條件的無窮數(shù)列{an},使得a2017=﹣2016?若存在,求出這樣的無窮數(shù)列的一個通項公式;若不存在,說明理由;
(3)記an點所有取值構成的集合為An , 求集合An中所有元素之和(結論不要證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 的兩個零點 滿足 ,集合 ,則( )
A.mA , 都有f(m+3)>0
B.mA , 都有f(m+3)<0
C.m0A , 使得f(m0+3)=0
D.m0A , 使得f(m0+3)<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù) ,a為常數(shù),且f(3)=
(1)求a值;
(2)求使f(x)≥4的x值的取值范圍;
(3)設g(x)=﹣ x+m,對于區(qū)間[3,4]上每一個x值,不等式f(x)>g(x)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案