【題目】某工廠加工一批零件,加工過(guò)程中會(huì)產(chǎn)生次品,根據(jù)經(jīng)驗(yàn)可知,其次品率與日產(chǎn)量(萬(wàn)件)之間滿足函數(shù)關(guān)系式,已知每生產(chǎn)1萬(wàn)件合格品可獲利2萬(wàn)元,但生產(chǎn)1萬(wàn)件次品將虧損1萬(wàn)元.(次品率=次品數(shù)/生產(chǎn)量).

(1)試寫出加工這批零件的日盈利額(萬(wàn)元)與日產(chǎn)量(萬(wàn)件)的函數(shù);

(2)當(dāng)日產(chǎn)量為多少時(shí),可獲得最大利潤(rùn)?最大利潤(rùn)為多少?

【答案】(1)(2)當(dāng)日產(chǎn)量為4萬(wàn)元時(shí)可獲得最大利潤(rùn)萬(wàn)元

【解析】

(1)討論當(dāng)時(shí),當(dāng)時(shí)兩種情況分別運(yùn)用日盈利減去虧損可得盈利額,即可得到所求解析式;(2)運(yùn)用二次函數(shù)和對(duì)勾函數(shù)的單調(diào)性,分別求得兩段函數(shù)的最大值,再比較大小即可得到所求最大值.

(1)當(dāng)時(shí),

當(dāng)時(shí),

所以函數(shù)關(guān)系為 ;

(2) 當(dāng)時(shí),

所以當(dāng)時(shí)取得最大值2

當(dāng)時(shí),,

所以在函數(shù)單調(diào)遞減,所以當(dāng)時(shí),取得最大值,

所以當(dāng)日產(chǎn)量為4萬(wàn)元時(shí)可獲得最大利潤(rùn)萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)點(diǎn)作直線l交拋物線CA,B兩點(diǎn)(點(diǎn)AP,B之間),設(shè)點(diǎn)A,B的縱坐標(biāo)分別為,過(guò)點(diǎn)Ax軸的垂線交直線于點(diǎn)D.

1)求證:;

2)求的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,是拋物線上的兩點(diǎn),若直線過(guò)拋物線的焦點(diǎn)且傾斜角為.,在準(zhǔn)線上的射影.則下列命題正確的是(

A.B.

C.D.為銳角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】通過(guò)隨機(jī)詢問(wèn)72名不同性別的大學(xué)生在購(gòu)買食物時(shí)是否看營(yíng)養(yǎng)說(shuō)明,得到如下列聯(lián)表:

總計(jì)

讀營(yíng)養(yǎng)說(shuō)明

16

28

44

不讀營(yíng)養(yǎng)說(shuō)明

20

8

28

總計(jì)

36

36

72

(1)根據(jù)以上列聯(lián)表判斷,能否在犯錯(cuò)誤的概率不超過(guò)0.005的前提下認(rèn)為性別和是否看營(yíng)養(yǎng)說(shuō)明有關(guān)系呢?

(2)從被詢問(wèn)的28名不讀營(yíng)養(yǎng)說(shuō)明的大學(xué)生中,隨機(jī)抽取2名學(xué)生,求抽到女生人數(shù)

的分布列及數(shù)學(xué)期望.

附:

0.010

0.005

0.001

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某服裝廠生產(chǎn)一種服裝,每件服裝的成本為80元,出廠單價(jià)為120.該廠為鼓勵(lì)銷售商訂購(gòu),決定當(dāng)一次訂購(gòu)超過(guò)100件時(shí),每多訂購(gòu)一件,訂購(gòu)的全部服裝的出廠單價(jià)就降低0.04.根據(jù)市場(chǎng)調(diào)查,銷售商一次訂購(gòu)量不會(huì)超過(guò)600件.

1)設(shè)一次訂購(gòu)為件服裝的實(shí)際出廠單價(jià)為元,寫出函數(shù)的表達(dá)式;

2)當(dāng)銷售商一次訂購(gòu)多少件服裝時(shí),該服裝廠獲得的利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),.

1)求f(x)的解析式;

2)設(shè)x[1,2]時(shí),函數(shù),是否存在實(shí)數(shù)m使得g(x)的最小值為6,若存在,求m的取值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩城相距,在兩地之間距地建一核電站給兩城供電.為保證城市安全,核電站距城市距離不得少于.已知供電費(fèi)用(元)與供電距離()的平方和供電量(億度)之積成正比,比例系數(shù),若城供電量為億度/月,城為億度/.

)把月供電總費(fèi)用表示成的函數(shù),并求定義域;

)核電站建在距城多遠(yuǎn),才能使供電費(fèi)用最小,最小費(fèi)用是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某人群中各種血型的人所占的比例見下表:

血腥

A

B

AB

O

該血型的人所占的比例/%

28

29

8

35

已知同種血型的人可以互相輸血,O型血可以給任一種血型的人輸血,任何人的血都可以輸給AB型血的人,其他不同血型的人不能互相輸血.該人群中的小明是B型血,若他因病需要輸血,問(wèn):

1)任找一個(gè)人,其血可以輸給小明的概率是多少?

2)任找一個(gè)人,其血不能輸給小明的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.

(1)求A∪B,(CUA)∩B;

(2)若A∩C≠,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案