設點A(-2,),橢圓+ =1的右焦點為F,點P在橢圓上移動.當|PA|+2|PF|取最小值時,P點的坐標是多少?
(2,)
設橢圓的右準線為l,過AANlNAN交橢圓于P,則P點就是所求的點,坐標為(2,).
事實上,易知橢圓離心率為.
|PA|+2|PF|=|PA|+2×|PN|=|PA|+|PN|,
(|PN|是P到相應準線的距離.顯然|PA|+|PN′|>|AP|+|PN|).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直角梯形中,,,,,
,橢圓以為焦點且經(jīng)過點
(Ⅰ)建立適當?shù)闹苯亲鴺讼,求橢圓的方程;
(Ⅱ)以該橢圓的長軸為直徑作圓,判斷點C與該圓的位置關系。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓=1上任意一點P,由P向x軸作垂線段PQ,垂足為Q,點M在線段PQ上,且=2,點M的軌跡為曲線E.
(1)求曲線E的方程;
(2)若過定點F(0,2)的直線l交曲線E于不同的兩點G,H(點G在點F,H之間),且滿足=2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若橢圓 (a>b>0)的左、右焦點分別為F1F2,線段F1F2被拋物線y2=2bx的焦點分成5∶3兩段,則此橢圓的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的兩焦點為F1(0,-1)、F2(0,1),直線y=4是橢圓的一條準線.
(1)求橢圓方程;
(2)設點P在橢圓上,且|PF1|-|PF2|=1,求tan∠F1PF2的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點M在橢圓上,橢圓方程為+=1,M點到左準線的距離為2.5,則它到右焦點的距離為
A.7.5B.12.5
C.2.5D.8.5

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知點為橢圓的左焦點,點,動點在橢圓上,則的最小值為      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

過橢圓C: (a>b>0)的一個焦點且垂直于x軸的直線與橢圓C交于點(,1).(1)求橢圓C的方程;(2)設過點P(4,1)的動直線與橢圓C相交于兩個不同點A、B,與直線2x+y-2=0交于點Q,若,,求λ+μ的值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的焦點為(-1,0)和(1,0),P是橢圓上的一點,且 與的等差中項,則該橢圓的方程為( )
A.B.C.D.

查看答案和解析>>

同步練習冊答案