如圖,邊長(zhǎng)為4的正方形ABCD與矩形ABEF所在平面互相垂直,M,N分別為AE,BC的中點(diǎn),AF=3.
(I)求證:DA⊥平面ABEF;
(Ⅱ)求證:MN∥平面CDFE;
(Ⅲ)在線段FE上是否存在一點(diǎn)P,使得AP⊥MN? 若存在,求出FP的長(zhǎng);若不存在,請(qǐng)說明理由.
(I)詳見解析;(Ⅱ)詳見解析;(Ⅲ)存在,
解析試題分析:(I)由面面垂直的性質(zhì)定理可直接證得。(Ⅱ)將轉(zhuǎn)化為的中點(diǎn),利用中位線證∥,再根據(jù)線面平行的判定定理即可證MN∥平面CDFE。(Ⅲ)假設(shè)存在點(diǎn)P使AP⊥MN,由(I)易得所以。(Ⅲ)由逆向思維可知只需證得,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/9a/9/guq3u1.png" style="vertical-align:middle;" />,即可證得AP⊥MN。由相似三角形的相似比即可求得FP。
試題解析:(I)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/cb/7/sjure1.png" style="vertical-align:middle;" />為正方形,所以。
因?yàn)槠矫?img src="http://thumb.zyjl.cn/pic5/tikupic/cb/7/sjure1.png" style="vertical-align:middle;" />, ,,所以.
(Ⅱ)連結(jié)
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d9/e/fh6qp.png" style="vertical-align:middle;" />是的中點(diǎn),且為矩形,所以也是的中點(diǎn)。因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ef/4/itcjj1.png" style="vertical-align:middle;" />是的中點(diǎn),所以∥,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/3c/2/1ipes3.png" style="vertical-align:middle;" />,所以MN∥平面CDFE。
(Ⅲ)過點(diǎn)作交線段于點(diǎn),則點(diǎn)即為所求。因?yàn)锳BCD為正方形,所以∥。因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/75/b/1hruu3.png" style="vertical-align:middle;" />,所以,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2b/a/zxaoz2.png" style="vertical-align:middle;" />,所以。因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f7/7/1m8jd3.png" style="vertical-align:middle;" />,且,所以,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/9a/9/guq3u1.png" style="vertical-align:middle;" />,所以。因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/bc/6/2eovi2.png" style="vertical-align:middle;" />與相似,所以,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b6/1/128ln3.png" style="vertical-align:middle;" />,所以。
考點(diǎn):線線平行、線面平行、線線垂直、線面垂直。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在空間直角坐標(biāo)系O-xyz中,正四棱錐P-ABCD的側(cè)棱長(zhǎng)與底邊長(zhǎng)都為,點(diǎn)M,N分別在PA,BD上,且.
(1)求證:MN⊥AD;
(2)求MN與平面PAD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知、、為不在同一直線上的三點(diǎn),且,.
(1)求證:平面//平面;
(2)若平面,且,,,求證:平面;
(3)在(2)的條件下,設(shè)點(diǎn)為上的動(dòng)點(diǎn),求當(dāng)取得最小值時(shí)的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,正△ABC的邊長(zhǎng)為4,CD是AB邊上的高,E,F(xiàn)分別是AC和BC邊的中點(diǎn),現(xiàn)將△ABC沿CD翻折成直二面角A-DC-B.
(1)試判斷直線AB與平面DEF的位置關(guān)系,并說明理由;
(2)求棱錐E-DFC的體積;
(3)在線段BC上是否存在一點(diǎn)P,使AP⊥DE?如果存在,求出的值;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com