已知f(x)=lnx-
1
x
,過(guò)函數(shù)f(x)的圖象上一點(diǎn)P的切線(xiàn)l與直線(xiàn)y=2x-3平行,則點(diǎn)P的坐標(biāo)為( 。
A.(1,-1)B.(2,ln2-
1
2
C.(3,ln3-
1
3
D.(4,ln4-
1
4
設(shè)切點(diǎn)P的坐標(biāo)為(x,y),
由題意得y′=
1
x
+
1
x2
(x>0),
∵切線(xiàn)與直線(xiàn)y=2x-3平行,
∴切線(xiàn)的斜率k=2=
1
x
+
1
x2
,
解得x=1或x=-
1
2
,
把x=1代入f(x)=lnx-
1
x
,得y=-1,
故P(1,-1)
故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

曲線(xiàn)y=ax3-2在點(diǎn)x=-1處切線(xiàn)的傾斜角為45°,那么a的值為(  )
A.-1B.1C.
1
3
D.-
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=x2+alnx.
(I)當(dāng)a=-2時(shí),求函數(shù)f(x)的極值;
(II)若g(x)=f(x)+
2
x
在[1,+∞)上是單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)a為實(shí)數(shù),函數(shù)f(x)=x3+ax2+(a-2)x的導(dǎo)函數(shù)是f′(x)是偶函數(shù),則曲線(xiàn)y=f(x)在原點(diǎn)處的切線(xiàn)方程為( 。
A.y=-3xB.y=-2xC.y=3xD.y=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)f(x)=2x3-3(a+1)x2+6ax+8,其中a∈R.已知f(x)在x=3處取得極值.
(1)求f(x)的解析式;
(2)求f(x)在點(diǎn)A(1,16)處的切線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=ax3+bx2-2x+c在x=-2時(shí)有極大值6,在x=1時(shí)有極小值,
(1)求a,b,c的值;
(2)求f(x)在區(qū)間[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=aln(ex+1)-(a+1)x,g(x)=x2-(a-1)x-f(lnx),a∈R,且g(x)在x=1處取得極值.
(1)求a的值;
(2)若對(duì)0≤x≤3,不等式g(x)≤m-8ln2成立,求m的取值范圍;
(3)已知△ABC的三個(gè)頂點(diǎn)A,B,C都在函數(shù)f(x)的圖象上,且橫坐標(biāo)依次成等差數(shù)列,討論△ABC是否為鈍角三角形,是否為等腰三角形.并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=
1
3
x3-
a+1
2
x2+bx+a(a,b∈R),且其導(dǎo)函數(shù)f′(x)的圖象過(guò)原點(diǎn).
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的圖象在x=3處的切線(xiàn)方程;
(Ⅱ)若存在x<0,使得f′(x)=-9,求a的最大值;
(Ⅲ)當(dāng)a>0時(shí),求函數(shù)f(x)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知曲線(xiàn)y=3x2+2x在點(diǎn)(1,5)處的切線(xiàn)與直線(xiàn)2ax-y-6=0平行,則a=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案