“x<-1”是“x≤0”
 
條件.(填“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”之一)
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)充分必要條件的定義可判斷即可.
解答: 解:∵x<-1,x≤0,
∴根據(jù)充分必要條件的定義可判斷:“x<-1”是“x≤0”充分不必要條件
故答案為:充分不必要.
點評:本題考查了充分必要條件的定義,屬于很容易的題目,難度不大,掌握好定義即可.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知|
OA
|=|
OB
|=1,且∠AOB=60°,則|
OA
+
OB
|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}中,an+1+(-1)nan=2n-1,則數(shù)列{an}前40項和等于( 。
A、820B、800
C、840D、860

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-2ax+1,若x∈[-2,2]時,求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知m,k∈Z,且方程mx2-kx+2=0在(0,1)上有兩個不同的實數(shù)根,則m+k的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在x軸上一動點P到A(0,2),B(1,1)距離之和的最小值為( 。
A、
10
B、
2
C、2+
2
D、1+
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設m,n是不同的直線,α,β是不同的平面,則以下四個命題中錯誤的有
 

①若m⊥α,n⊥α,則m∥n;  
②若α⊥β,m∥α,則m⊥β;
③若m⊥α,m⊥n,則n∥α;
④若n⊥α,n⊥β,則α∥β.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:(x-3)2+(y-4)2=4,直線l過定點A(1,0).
(1)若l與圓C相切,求l的方程;
(2)若l與圓C相交于P、Q兩點,若|PQ|=2
2
,求此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過點(2,1)且傾斜角α滿足tanα=
4
3
的直線方程是
 

查看答案和解析>>

同步練習冊答案