【題目】設(shè)是給定的平面向量,且為非零向量,關(guān)于的分解,有如下個命題:
① 給定向量,總存在向量,使得;
② 給定不共線向量和,總存在實數(shù)和,使得;
③ 給定向量和整數(shù),總存在單位向量和實數(shù),使得;
④ 給定正數(shù)和,總存在單位向量和單位向量,使得;
若上述命題中的向量在同一平面內(nèi)且兩兩不共線,則其中真命題的序號為________.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列說法:
①方程表示一個圓;
②若,則方程表示焦點在軸上的橢圓;
③已知點,若,則動點的軌跡是雙曲線的右支;
④以過拋物線焦點的弦為直徑的圓與該拋物線的準(zhǔn)線相切,
其中正確說法的個數(shù)是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)的圖像與軸相切,求證:對于任意互不相等的正實數(shù),,都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) 若,則的最小值為__________; 若有最小值,則實數(shù)的取值范圍是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】矩陣乘法運算的幾何意義為平面上的點在矩陣的作用下變換成點,記,且.
(1)若平面上的點在矩陣的作用下變換成點,求點的坐標(biāo);
(2)若平面上相異的兩點、在矩陣的作用下,分別變換為點、,求證:若點為線段上的點,則點在的作用下的點在線段上;
(3)已知△的頂點坐標(biāo)為、、,且△在矩陣作用下變換成△,記△與△的面積分別為與,求的值,并寫出一般情況(三角形形狀一般化且變換矩陣一般化)下與的關(guān)系(不要求證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校高三年級有兩個文科班,四個理科班,現(xiàn)每個班指定1人,對各班的衛(wèi)生進(jìn)行檢查.若每班只安排一人檢查,且文科班學(xué)生不檢查文科班,理科班學(xué)生不檢查自己所在的班,則不同安排方法的種數(shù)是( )
A.48B.72C.84D.168
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在長方體中,點E是棱上的一個動點,若平面交棱于點F,給出下列命題:
①四棱錐的體積恒為定值;
②對于棱上任意一點E,在棱上均有相應(yīng)的點G,使得平面;
③O為底面對角線和的交點,在棱上存在點H,使平面;
④存在唯一的點E,使得截面四邊形的周長取得最小值.
其中為真命題的是____________________.(填寫所有正確答案的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點,動點在軸上運動,過點作直線交軸于點,延長至點,使.點的軌跡是曲線.
(1)求曲線的方程;
(2)若,是曲線上的兩個動點,滿足,證明:直線過定點;
(3)若直線與曲線交于,兩點,且,,求直線的斜率的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com