曲線上點處的切線斜率為4,則點的一個坐標(biāo)是
A.(0,-2)B.(1, 1)C.(-1, -4) D.(1, 4)
C
.設(shè)坐標(biāo)為,則
時,;時,。故選C
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點為圓上的動點,且不在軸上,軸,垂足為,線段中點的軌跡為曲線,過定點任作一條與軸不垂直的直線,它與曲線交于、兩點。
(I)求曲線的方程;
(II)試證明:在軸上存在定點,使得總能被軸平分

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)曲線在點(1,)處的切線與直線平行,則(   )
A.1B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

軸上,且,則點的坐標(biāo)為      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知m∈R,直線l:mx-(m2+1)y=4m和圓C:x2+y2-8x+4y+16=0.
(1)求直線l斜率的取值范圍;
(2)直線l能否將圓C分割成弧長的比值為的兩段圓?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)
(文)如圖,|AB|=2,O為AB中點,直線過B且垂直于AB,過A的動直線與交于點C,點M在線
段AC上,滿足=.
(I)求點M的軌跡方程;
(II)若過B點且斜率為- 的直線與軌跡M交于點P,點Q(t,0)是x軸上任意一點,求當(dāng)ΔBPQ為銳角三角形時t的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點在x軸上,橢圓的短軸端點和焦點所圍成的四邊形的正方形,且橢圓上的點到焦點的距離的最大值為+1,
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)過橢圓的左焦點F且不與坐標(biāo)軸垂直的直線交橢圓于A、B兩點,線段AB的垂直平分線與x軸交于G點,求G點的橫坐標(biāo)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

”是方程表示雙曲線的(      )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點的坐標(biāo)分別是,直線相交于點,且直線與直線的斜率之差是,則點的軌跡方程是
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案