定義:對(duì)于各項(xiàng)均為整數(shù)的數(shù)列,如果(=1,2,3, )為完全平方數(shù),則稱數(shù)列具有“性質(zhì)”;不論數(shù)列是否具有“性質(zhì)”,如果存在數(shù)列不是同一數(shù)列,且滿足下面兩個(gè)條件:
(1)的一個(gè)排列;
(2)數(shù)列具有“性質(zhì)”,則稱數(shù)列具有“變換性質(zhì)”.
給出下面三個(gè)數(shù)列:
①數(shù)列的前項(xiàng)和;
②數(shù)列:1,2,3,4,5;
③數(shù)列:1,2,3,4,5,6,7,8,9,10,11.
具有“性質(zhì)”的為        ;具有“變換性質(zhì)”的為           .

①、②

解析試題分析:對(duì)于①,求出數(shù)列{an}的通項(xiàng),驗(yàn)證ai+i=i2(i=1,2,3,…)為完全平方數(shù),可得結(jié)論;對(duì)于②,數(shù)列1,2,3,4,5,具有“變換P性質(zhì)”,數(shù)列{bn}為3,2,1,5,4,具有“P性質(zhì)”;對(duì)于③,因?yàn)?1,4都只有與5的和才能構(gòu)成完全平方數(shù),所以1,2,3,…,11,不具有“變換P性質(zhì)”. 解:對(duì)于①,當(dāng)n≥2時(shí),an=Sn-Sn-1=n2-n,∵a1=0,∴an=n2-n,∴ai+i=i2(i=1,2,3,…)為完全平方數(shù),∴數(shù)列{an}具有“P性質(zhì)”;,對(duì)于②,數(shù)列1,2,3,4,5,具有“變換P性質(zhì)”,數(shù)列{bn}為3,2,1,5,4,具有“P性質(zhì)”,∴數(shù)列{an}具有“變換P性質(zhì)”;,對(duì)于③,因?yàn)?1,4都只有與5的和才能構(gòu)成完全平方數(shù),所以1,2,3,…,11,不具有“變換P性質(zhì)”.,故答案為:①,②.
考點(diǎn):新定義
點(diǎn)評(píng):本題考查新定義,考查學(xué)生分析解決問(wèn)題的能力,正確理解新定義是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

數(shù)列滿足,則               .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知函數(shù),等差數(shù)列的公差為.若,則      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,將正分割成16個(gè)全等的小正三角形,在每個(gè)三角形的頂點(diǎn)各放置一個(gè)數(shù),使位于同一直線上的點(diǎn)放置的數(shù)(當(dāng)數(shù)的個(gè)數(shù)不少于3時(shí))都分別依次成等差數(shù)列,若頂點(diǎn)處的三個(gè)數(shù)互不相同且和為1,則所有頂點(diǎn)的數(shù)之和      

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

若數(shù)列是等差數(shù)列,對(duì)于,則數(shù)列也是等差數(shù)列。類比上述性質(zhì),若數(shù)列是各項(xiàng)都為正數(shù)的等比數(shù)列,對(duì)于,則       時(shí),數(shù)列也是等比數(shù)列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

將全體正整數(shù)排成一個(gè)三角形數(shù)陣:按照右邊所示排列的規(guī)律,第行()從左向右的第3個(gè)數(shù)為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

對(duì)于數(shù)列而言,若是以為公差的等差數(shù)列,是以為公差的等差數(shù)列,依此類推,我們就稱該數(shù)列為等差數(shù)列接龍,已知,則等于   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

在數(shù)列中,如果對(duì)任意的,都有為常數(shù)),則稱數(shù)列為比等差數(shù)列,稱為比公差.現(xiàn)給出以下命題:①若數(shù)列滿足,,),則該數(shù)列不是比等差數(shù)列;②若數(shù)列滿足,則數(shù)列是比等差數(shù)列,且比公差;③等比數(shù)列一定是比等差數(shù)列,等差數(shù)列不一定是比等差數(shù)列;④若是等差數(shù)列,是等比數(shù)列,則數(shù)列是比等差數(shù)列.
其中所有真命題的序號(hào)是_________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列滿足.
(1)若數(shù)列是等差數(shù)列,求其公差的值;
(2)若數(shù)列的首項(xiàng),求數(shù)列的前100項(xiàng)的和.

查看答案和解析>>

同步練習(xí)冊(cè)答案