(本小題滿分14分)
從橢圓+=1(a>b>0)上一點(diǎn)M向x軸作垂線,恰好通過(guò)橢圓的左焦點(diǎn)F1,且它的長(zhǎng)軸端點(diǎn)A及短軸端點(diǎn)B的連線AB平行于OM.
(Ⅰ)求橢圓的離心率 ;
(Ⅱ)若b=2,設(shè)Q是橢圓上任意一點(diǎn),F2是右焦點(diǎn),求△F1QF2的面積的最大值;
(Ⅲ)當(dāng)QF2^AB時(shí),延長(zhǎng)QF2與橢圓交于另一點(diǎn)P,若DF1PQ的面積為20(Q是橢圓上的點(diǎn)),求此橢圓的方程。
(Ⅰ),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052602101005848293/SYS201205260212098396493311_DA.files/image002.png">,所以,所以
所以
(Ⅱ)
(Ⅲ),設(shè)橢圓方程為,與直線聯(lián)立可得
.
所以,所以橢圓方程為.
【解析】(I)要結(jié)合橢圓的通徑及直線平行斜率相等等知識(shí)建立關(guān)于a,b,c的方程,再結(jié)合a2=b2+c2,進(jìn)而得到a與c的關(guān)系,從而求出離心率。
(II)由于b=2,由(I)知b=c,所以可把△F1QF2的面積S表示成關(guān)于Q的縱坐標(biāo)的函數(shù),然后根據(jù)縱坐標(biāo)的范圍在[-2,2]之間進(jìn)而確定S的最大值。
(III)根據(jù)離心率,對(duì)橢圓方程進(jìn)行化簡(jiǎn)變形為,然后與直線聯(lián)立,消去x后借助韋達(dá)定理,求出|PQ|的值。進(jìn)而通過(guò)面積建立關(guān)于b的方程,求出b的值。要注意驗(yàn)證判斷式是否大于零。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長(zhǎng)的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對(duì)一應(yīng)季商品過(guò)去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測(cè)統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價(jià)格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤(rùn);
(Ⅲ)該商品第幾天的利潤(rùn)最大?并求出最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com