(本題10分)已知函數(shù)是奇
函數(shù),當(dāng)x>0時(shí),有最小值2,且f (1).
(Ⅰ)試求函數(shù)的解析式;
(Ⅱ)函數(shù)圖象上是否存在關(guān)于點(diǎn)(1,0)對(duì)稱的兩點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
解:(Ⅰ)∵f(x)是奇函數(shù) ∴f(―x) =―f(x)
即
……………………1分
當(dāng)且僅當(dāng)時(shí)等號(hào)成立.則 ……2分
由得,即,
,解得;
又,
……………………………………………5分
(Ⅱ)設(shè)存在一點(diǎn)(x0,y0)在y="f" (x)圖象上,
則關(guān)于(1,0)的對(duì)稱點(diǎn)(,―y0)也在y ="f" (x)圖象上, …………6分
則 解得:或
∴函數(shù)f (x)圖象上存在兩點(diǎn)和關(guān)于點(diǎn)(1,0)對(duì)稱. …………………………………10分
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本大題9分)已知是定義在R上的奇函數(shù),當(dāng)時(shí),
(1)求的表達(dá)式;
(2)設(shè)0<a<b,當(dāng)時(shí),的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ae/b/1kenv3.png" style="vertical-align:middle;" />,求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),其中為常數(shù)
(1)證明:函數(shù)在R上是減函數(shù).
(2)當(dāng)函數(shù)是奇函數(shù)時(shí),求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),且定義域?yàn)椋?,2).
(1)求關(guān)于x的方程+3在(0,2)上的解;
(2)若是定義域(0,2)上的單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(3)若關(guān)于x的方程在(0,2)上有兩個(gè)不同的解,求k的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)已知函數(shù)f(x)=
(1)若函數(shù)定義域?yàn)閇3,4],求函數(shù)值域
(2)若函數(shù)定義域?yàn)閇-3,4],求函數(shù)值域
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,設(shè)二次函數(shù)的圖象與兩坐標(biāo)軸有三個(gè)不同的交點(diǎn). 經(jīng)過(guò)這三個(gè)交點(diǎn)的圓記為.
(I)求實(shí)數(shù)的取值范圍;
(II)求圓的一般方程;
(III)圓是否經(jīng)過(guò)某個(gè)定點(diǎn)(其坐標(biāo)與無(wú)關(guān))?若存在,請(qǐng)求出點(diǎn)點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)已知函數(shù),且。
(1)求的值;
(2)判定的奇偶性;
(3)判斷在上的單調(diào)性,并給予證明。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com