已知定義域為R的函數(shù)y=f(x),則下列命題:
①若f(x-1)=f(1-x)恒成立,則函數(shù)y=f(x)的圖象關(guān)于直線x=1的對稱;
②若f(x+1)+f(1-x)=0恒成立,則函數(shù)y=f(x)的圖象關(guān)于(1,0)點對稱;
③函數(shù)y=f(x-1)的圖象與函數(shù)y=f(1-x)的圖象關(guān)于y軸對稱;
④函數(shù)y=-f(x-1)的圖象與函數(shù)y=f(1-x)的圖象關(guān)于原點對稱;
⑤若f(1+x)+f(x-1)=0恒成立,則函數(shù)y=f(x)以4為周期.
其中真命題的有


  1. A.
    ①④
  2. B.
    ②③
  3. C.
    ②⑤
  4. D.
    ③⑤
C
分析:利用函數(shù)的基本性質(zhì),對稱軸,對稱中心,周期,分別對選項驗證,判定正誤即可.
解答:①由f(x-1)=f(1-x),則函數(shù)y=f(x)的圖象關(guān)于x=0對稱,故①錯.
②f(x+1)+f(1-x)=0恒成立,則函數(shù)y=f(x)的圖象關(guān)于(1,0)點對稱;②正確.
③函數(shù)y=f(x-1)的圖象與函數(shù)y=f(1-x)的圖象關(guān)于x=1對稱;③錯.
④函數(shù)y=-f(x-1)的圖象與函數(shù)y=f(1-x)的圖象關(guān)于(1,0)對稱;④錯.
⑤若f(1+x)+f(x-1)=0恒成立,f(x+4)=-f(x+2)=f(x),則函數(shù)y=f(x)以4為周期.正確.
故選C.
點評:本題考查函數(shù)圖象的對稱性,函數(shù)的周期性,考查學(xué)生靈活運用知識的能力,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010•石家莊二模)已知定義域為R的函數(shù)f(x)在(1,+∞)上為減函數(shù),且函數(shù)y=f(x+1)為偶函數(shù),則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)滿足f(x)f(x+2)=5,若f(2)=3,則f(2012)=
5
3
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)在(4,+∞)上為減函數(shù),且函數(shù)y=f(x)的對稱軸為x=4,則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)=
-2x+a2x+1
是奇函數(shù)
(1)求a值;
(2)判斷并證明該函數(shù)在定義域R上的單調(diào)性;
(3)若對任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求實數(shù)k的取值范圍;
(4)設(shè)關(guān)于x的函數(shù)F(x)=f(4x-b)+f(-2x+1)有零點,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)滿足f(4-x)=-f(x),當(dāng)x<2時,f(x)單調(diào)遞減,如果x1+x2>4且(x1-2)(x2-2)<0,則f(x1)+f(x2)的值( 。

查看答案和解析>>

同步練習(xí)冊答案