分析 由已知a∈(0,1)且b∈(1,+∞)得到logab<0,關(guān)于x的不等式${log_a}{b^{({x-3})}}<0$的變形為x-3>0,解之即可.
解答 解:關(guān)于x的不等式${log_a}{b^{({x-3})}}<0$的變形為(x-3)logab<0,又a∈(0,1)且b∈(1,+∞)所以logab<0,
所以x-3>0,解得x>3;
所以不等式的解集為(3,+∞).
故答案為:(3,+∞)
點評 本題考查了對數(shù)函數(shù)性質(zhì)的運用以及對數(shù)不等式的解法;熟練掌握對數(shù)函數(shù)的性質(zhì)是解答的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,+∞) | B. | [0,1]∪(3,+∞) | C. | [0,1)∪[3,+∞) | D. | (1,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({-∞\;,\;-\frac{2}{3}}]$ | B. | $[{\frac{2}{3}\;,\;+∞})$ | C. | $({-∞\;,\;-\frac{1}{2}}]$ | D. | $({-∞\;,\;\frac{1}{2}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1.72.5>1.73 | B. | 0.6-1>0.62 | C. | 1.70.3<0.93.1 | D. | 0.8-0.1>1.250.2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com