【題目】某學(xué)校為了選拔學(xué)生參加“XX市中學(xué)生知識競賽,先在本校進行選拔測試,若該校有100名學(xué)生參加選拔測試,并根據(jù)選拔測試成績作出如圖所示的頻率分布直方圖.

1)根據(jù)頻率分布直方圖,估算這100名學(xué)生參加選拔測試的平均成績;

2)該校推薦選拔測試成績在110以上的學(xué)生代表學(xué)校參加市知識競賽,為了了解情況,在該校推薦參加市知識競賽的學(xué)生中隨機抽取2人,求選取的兩人的選拔成績在頻率分布直方圖中處于不同組的概率.

【答案】1;(2.

【解析】

試題(1)利用頻率分布直方圖求平均值,取各組的中間值,乘以各組的頻率再相加即得,即,其中為第組數(shù)據(jù)的頻率,是第組數(shù)據(jù)的中間值.2)該校學(xué)生的選拔測試分?jǐn)?shù)在4人,分別記為AB,C,D,分?jǐn)?shù)在2人,分別記為ab,將從這6人中隨機選取2人的所有可能結(jié)果一一列舉出來:(A,B),(A,C),(A,D),(A,a),(A,b),(BC),(B,D),(B,a),(B,b),(C,D),(C,a),(C,b),(Da),(D,b),(a,b),共15個基本事件,找出其中符合題設(shè)條件的基本事件的個數(shù),二者相除即得所求概率.

1)設(shè)平均成績的估計值為,則:

4

2)該校學(xué)生的選拔測試分?jǐn)?shù)在4人,分別記為A,BC,D,分?jǐn)?shù)在2人,分別記為a,b,在則6人中隨機選取2人,總的事件有(A,B),(A,C),(A,D),

A,a),(A,b),(B,C),(B,D),(B,a),(Bb),(C,D),(C,a),(Cb),(Da),(Db),(a,b)共15個基本事件,其中符合題設(shè)條件的基本事件有8個.

故選取的這兩人的選拔成績在頻率分布直方圖中處于不同組的概率為..12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知在平面直角坐標(biāo)系中,圓的參數(shù)方程為 (為參數(shù)).以原點為極點,軸的非負半軸為極軸,取相同的單位長度建立極坐標(biāo)系.

(I)求圓的普通方程及其極坐標(biāo)方程;

(II)設(shè)直線的極坐標(biāo)方程為,射線與圓的交點為,與直線的交點為Q,求線段PQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某化工廠從今年一月起,若不改善生產(chǎn)環(huán)境,按生產(chǎn)現(xiàn)狀,每月收入為80萬元,同時將受到環(huán)保部門的處罰,第一個月罰4萬元,以后每月增加2萬元.如果從今年一月起投資500萬元添加回收凈化設(shè)備(改造設(shè)備時間不計),一方面可以改善環(huán)境,另一方面可以大大降低原料成本,據(jù)測算,添加回收凈化設(shè)備并投產(chǎn)后的前4個月中的累計生產(chǎn)凈收入g(n)是生產(chǎn)時間個月的二次函數(shù)是常數(shù),且前3個月的累計生產(chǎn)凈收入可達309萬元,從第5個月開始,每個月的生產(chǎn)凈收入都與第4個月相同,同時,該廠不但不受處罰,而且還將得到環(huán)保部門的一次性獎勵120萬元.

(1)求前6個月的累計生產(chǎn)凈收入g(6)的值;

(2)問經(jīng)過多少個月,投資開始見效,即投資改造后的純收入多于不改造的純收入.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)、、是三條不同的直線,、、是三個不同的平面,給出下列四個命題:

①若,,,,,則

②若,,則;

③若是兩條異面直線,,,,則;

④若,,,,則.

其中正確命題的序號是(

A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓 經(jīng)過橢圓 的左右焦點,且與橢圓在第一象限的交點為,且三點共線,直線交橢圓 兩點,且).

(1)求橢圓的方程;

(2)當(dāng)三角形的面積取得最大值時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(I)若,求曲線在點處的切線方程;

(II)若上無極值點,求的值;

(III)當(dāng)時,討論函數(shù)的零點個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓中心在原點,焦點在坐標(biāo)軸上,直線與橢圓在第一象限內(nèi)的交點是,點軸上的射影恰好是橢圓的右焦點,橢圓另一個焦點是,且.

(1)求橢圓的方程;

(2)直線過點,且與橢圓交于兩點,求的內(nèi)切圓面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足.

1)證明:數(shù)列為等差數(shù)列;

2)設(shè)數(shù)列的前n項和為,若,且對任意的正整數(shù)n,都有,求整數(shù)的值;

3)設(shè)數(shù)列滿足,若,且存在正整數(shù)st,使得是整數(shù),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)若,令,若的兩個極值點,且,求正實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案