(本小題滿分12分)提高過江大橋的車輛通行能力可改善整個(gè)城市的交通狀況.在一般情況下,大橋上的車流速度v(單位:千米/小時(shí))是車流密度x(單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過20輛/千米時(shí),車流速度為60千米/小時(shí).研究表明:當(dāng)20≤x≤200時(shí),車流速度v是車流密度x的一次函數(shù)
(1)當(dāng)0≤x≤200時(shí),求函數(shù)v(x)的表達(dá)式
(2)當(dāng)車流密度x為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上某觀測點(diǎn)的車輛數(shù),單位:輛/小時(shí))f(x)=x·v(x)可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí))
解:(1)由題意:當(dāng)0≤x≤20時(shí),v(x)=60;當(dāng)20≤x≤200時(shí),設(shè)v(x)=ax+b.
再由已知得解得………………………………4分
故函數(shù)v(x)的表達(dá)式為
………………………………6分
(2)依題意并由(1)可得
……………………………8分
當(dāng)0≤x≤20時(shí),f(x)為增函數(shù),故當(dāng)x=20時(shí),其最大值為60×20=1200;……9分
當(dāng)20≤x≤200時(shí),f(x)=x(200-x)≤2=.……………10分
當(dāng)且僅當(dāng)x=200-x,即x=100時(shí),等號成立.
所以,當(dāng)x=100時(shí),f(x)在區(qū)間[20,200]上取得最大值.……………11分
綜上,當(dāng)x=100時(shí),f(x)在區(qū)間[0,200]上取得最大值≈3333.
即當(dāng)車流密度為100輛/千米時(shí),車流量可以達(dá)到最大,最大值約為3333輛/小時(shí).
………12分
解析
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)設(shè),,函數(shù),
(Ⅰ)設(shè)不等式的解集為C,當(dāng)時(shí),求實(shí)數(shù)取值范圍;
(Ⅱ)若對任意,都有成立,試求時(shí),的值域;
(Ⅲ)設(shè) ,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分)已知二次函數(shù)對都滿足且,設(shè)函數(shù)
(,).
(1)求的表達(dá)式;
(2)若,使成立,求實(shí)數(shù)的取值范圍;
(3)設(shè),,求證:對于,恒有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知為偶函數(shù),曲線過點(diǎn),
.
(1)若曲線存在斜率為0的切線,求實(shí)數(shù)的取值范圍;
(2)若當(dāng)時(shí)函數(shù)取得極值,確定的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)畫出函數(shù)的圖象并指出單調(diào)區(qū)間;
(2)利用圖象討論:
關(guān)于方程(為常數(shù))解的個(gè)數(shù)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com